Journal of Molecular Modeling

, Volume 13, Issue 9, pp 1009–1016 | Cite as

The platinum-olefin binding energy in series of (PH3)2Pt(olefin) complexes - a theoretical study

  • David Karhánek
  • Petr Kačer
  • Marek Kuzma
  • Jana Šplíchalová
  • Libor Červený
Original Paper

Abstract

Theoretical investigation of Pt(0)-olefin organometallic complexes containing tertiary phosphine ligands was focused on the strength of platinum-olefin electronic interaction. DFT theoretical study of electronic effects in a substantial number of ethylene derivatives was evaluated in terms of the Pt-olefin binding energy using MP2 correlation theory. Organometallics bearing coordinated olefins with general formula (R1R2C = CR3R4)Pt(PH3)2 [R = various substituents] had been selected, including olefins containing both electron-donor substituents as well as electron-withdrawing groups. The stability of the corresponding complexes increases with a strengthening electron-withdrawal ability of the olefin substituents.

Figure

Representation of (CH2 = CHR)Pt(PPh3)2 and the stability chart

Keywords

Binding energy DFT Molecular modeling Platinum complexes 

Notes

Acknowledgements

Authors wish to acknowledge the Grant Agency of the Czech republic (Grant 203/04/P059) and the Ministry of Education of the Czech republic (Grant CEZ:MSM 223 100001) for the financial support.

References

  1. 1.
    Dewar MJS (1951) Bull Soc Chim Fr 18:C71Google Scholar
  2. 2.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939–2947Google Scholar
  3. 3.
    Cenini S, Ugo R, Bonati F, LaMonica G (1967) Inorg Chem Nucl Lett 2:191–193CrossRefGoogle Scholar
  4. 4.
    Evans A, Mortimer CT, Puddephat RJ (1974) J Organomet Chem 72:295–297CrossRefGoogle Scholar
  5. 5.
    Kirkham WG, Lister MW, Poyntz RB (1975) Thermochimica Acta 11:89–93CrossRefGoogle Scholar
  6. 6.
    Uddin J, Dapprich S, Frenking G, Yates BF (1999) Organometallics 18:457–465CrossRefGoogle Scholar
  7. 7.
    Yates BF (2000) J Mol Struct (Theochem) 506:223–232CrossRefGoogle Scholar
  8. 8.
    Dedieu A (2000) Chem Rev 100(2):543–600CrossRefGoogle Scholar
  9. 9.
    Yates BF (2001) J Organomet Chem 635:142–152CrossRefGoogle Scholar
  10. 10.
    Stamm E, Becker KB, Engel P, Ermer O, Keese R (1979) Angew Chem 91(9):746–747CrossRefGoogle Scholar
  11. 11.
    Morokuma K, Borden WT (1991) J Am Chem Soc 113:1912–1914CrossRefGoogle Scholar
  12. 12.
    Visser JP, Schipperijn AJ, Lukas J (1973) J Organomet Chem 47:433–438CrossRefGoogle Scholar
  13. 13.
    Gassman PG, Cesa IG (1984) Organometallics 3:119–128CrossRefGoogle Scholar
  14. 14.
    Hughes DL, Leigh GJ, McMahon CN (1997) J Chem Soc Dalton Trans 1301–1307Google Scholar
  15. 15.
    Koga N, Morokuma K (1993) Chem Phys Lett 202:330–334CrossRefGoogle Scholar
  16. 16.
    Fagan PJ, Calabrese JC (1992) Accounts Chem Res 25:134–142CrossRefGoogle Scholar
  17. 17.
    Fagan PJ, Calabrese JC, Malone B (1991) Science 252:1160–1161Google Scholar
  18. 18.
    Fagan PJ, Calabrese JC, Malone B (1991) J Am Chem Soc 113:9408–9409CrossRefGoogle Scholar
  19. 19.
    Pellizer G, Graziani M, Lenarda M, Heaton BT (1983) Polyhedron 2:657–661CrossRefGoogle Scholar
  20. 20.
    Cenini S, Ugo R, LaMonica G (1971) J Chem Soc A 409–415Google Scholar
  21. 21.
    Chaloner PA, Davies SE, Hitchcock PB (1997) Polyhedron 16(5):765–776CrossRefGoogle Scholar
  22. 22.
    Fitch JW, Froelich JA (1977) J Organomet Chem 128:C1–C4Google Scholar
  23. 23.
    Gaussian 03, Revision C.02; Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA; Gaussian Inc., Wallingford CT, 2004Google Scholar
  24. 24.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  25. 25.
    Nunzi F, Sgamellotti A, Re N, Floriani C (1999) J Chem Soc Dalton Trans 3487–3492Google Scholar
  26. 26.
    Kirkham WG, Lister MW, Poyntz RB (1975) Thermochimica Acta 11:89–93CrossRefGoogle Scholar
  27. 27.
    Mortimer CT (1984) Rev Inorg Chem 6:233–234Google Scholar
  28. 28.
    Cheng PT, Nyburg SC (1972) Can J Chem 50:912–921CrossRefGoogle Scholar
  29. 29.
    Mittendorfer F, Thomazeau C, Raybaud P, Toulhoat H (2003) J Phys Chem B 107:12287–12295CrossRefGoogle Scholar
  30. 30.
    Wilke G, Schott H, Heimbach P (1967) Angew Chem 79:62–63CrossRefGoogle Scholar
  31. 31.
    Nyman CJ, Wymore CE, Wilkinson G (1968) J Chem Soc A 561–563Google Scholar
  32. 32.
    Birk JP, Halpern J, Pickard AL (1968) J Am Chem Soc 90:4491–4492CrossRefGoogle Scholar
  33. 33.
    de Sousa GF, Filgueiras CAL, Hitchcock PB, Nixon JF (1997) Inorg Chim Acta 261:217–220CrossRefGoogle Scholar
  34. 34.
    Chatt J, Rowe GA, Williams AA (1957) Proc Chem Soc 208Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Karhánek
    • 1
  • Petr Kačer
    • 1
  • Marek Kuzma
    • 2
  • Jana Šplíchalová
    • 1
  • Libor Červený
    • 1
  1. 1.Department of Organic TechnologyInstitute of Chemical Technology, ICT PraguePrague 6Czech Republic
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations