Journal of Molecular Modeling

, Volume 13, Issue 8, pp 937–942 | Cite as

Molecular modeling of layered double hydroxide intercalated with benzoate, modeling and experiment

  • Petr KovářEmail author
  • M. Pospíšil
  • M. Nocchetti
  • P. Čapková
  • Klára Melánová
Original Paper


The structure of Zn4Al2 Layered Double Hydroxide intercalated with benzencarboxylate (C6H5COO) was solved using molecular modeling combined with experiment (X-ray powder diffraction, IR spectroscopy, TG measurements). Molecular modeling revealed the arrangement of guest molecules, layer stacking, water content and water location in the interlayer space of the host structure. Molecular modeling using empirical force field was carried out in Cerius2 modeling environment. Results of modeling were confronted with experiment that means comparing the calculated and measured diffraction pattern and comparing the calculated water content with the thermogravimetric value. Good agreement has been achieved between calculated and measured basal spacing: d calc  = 15.3 Å and d exp  = 15.5 Å. The number of water molecules per formula unit (6H2O per Zn4Al2(OH)12) obtained by modeling (i.e., corresponding to the energy minimum) agrees with the water content estimated by thermogravimetry. The long axis of guest molecules are almost perpendicular to the LDH layers, anchored to the host layers via COO groups. Mutual orientation of benzoate ring planes in the interlayer space keeps the parquet arrangement. Water molecules are roughly arranged in planes adjacent to host layers together with COO groups.


Benzoate Layered double hydroxide Molecular modeling X-ray diffraction 



This work was supported by the Grant Agency of the Czech Republic, grant no 203/05/2306: and by the Ministry of Education MSM 0021620835 and MSM 6198910016.


  1. 1.
    Rives V (2001) Layered double hydroxides present and future. Nova Science Publishers, New York, pp 1–38Google Scholar
  2. 2.
    Steven P, Jones W, Jones N (1998) New J Chem 22:105–115CrossRefGoogle Scholar
  3. 3.
    Zhang X, Wei M (2005) J Sol State Chem 178:2701–2708CrossRefGoogle Scholar
  4. 4.
    Aloisi G, Stanimirova T, Hibino T (2006) Appl Clay Sci 31:65–75CrossRefGoogle Scholar
  5. 5.
    Ishikawa T, Matsumoto K, Kandori K, Nakayama T (2007) Colloids Surfaces A 293:135–145CrossRefGoogle Scholar
  6. 6.
    Radha AV, Kamath PV, Shivakumara C (2005) Solid State Sci 7:1180–1187CrossRefGoogle Scholar
  7. 7.
    Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:43–55Google Scholar
  8. 8.
    Vaccari A (1999) Appl Clay Sci 14:161–198CrossRefGoogle Scholar
  9. 9.
    Greenwell HC, Holliman PJ, Jones W, Velasco BV (2006) Catal Today 114:397–402CrossRefGoogle Scholar
  10. 10.
    Lin Y, Wang J, Evans DG, Li D (2006) J Phys Chem Solids 67:998–1001CrossRefGoogle Scholar
  11. 11.
    Van der Ven L, Van Gemert MLM, Batenburg LF, Keern JJ, Gielgens LH, Koster TPM, Fischer HR (2000) Appl Clay Sci 17:25–34CrossRefGoogle Scholar
  12. 12.
    Costantino U, Nocchetti M, Layered Double Hydroxides and their intercalation compounds in Photochemistry and Medicinal Chemistry Chapter 8. In: Ref. Rives V (2001) Layered double hydroxides Present and future. Nova Science Publishers, New York, pp 435–468Google Scholar
  13. 13.
    Ambrogi V, Fardella G, Grandolini G et al (2003) J Pharm Sci 92(7):1407–1418CrossRefGoogle Scholar
  14. 14.
    Orthman J, Zhu HY, Lu GQ (2003) Separation Purification Technol 31:53–59CrossRefGoogle Scholar
  15. 15.
    De Jong KP (2006) J Phys Chem B 110:9211–9218CrossRefGoogle Scholar
  16. 16.
    Latterini L, Nocchetti M, Aloisi GG, Costantino U, Elisei F (2007) Inorg Chim Acta 360:728–740CrossRefGoogle Scholar
  17. 17.
    Ogawa M, Kuroda K (1995) Chem Rev 339:335–341Google Scholar
  18. 18.
    Lei L, Khan A, O’Hare D (2005) J Solid State Chem 178:3648–3654CrossRefGoogle Scholar
  19. 19.
    Tronto J, Leroux F, Crepaldi EL, Naal Z, Klein SI, Valim JB (2006) J Phys Chem Solids 67:968–972CrossRefGoogle Scholar
  20. 20.
    Chen AM, Xu HL, Hua WM et al (2005) Top Catal 35(1–2):177–185CrossRefGoogle Scholar
  21. 21.
    Newman SP, Jones W (1999) J Solid State Chem 148(1):26–40CrossRefGoogle Scholar
  22. 22.
    Kooli F, Chisem IC, Vucelic M et al (1996) Chem Mater 8(8):1969–1977CrossRefGoogle Scholar
  23. 23.
    Vucelic M, Moggridge GD (1995) J Phys Chem 99(20):8328–8337CrossRefGoogle Scholar
  24. 24.
    Moggridge GD, Parent P, Tourilion G (1995) Physica B 209(1–4):269–270CrossRefGoogle Scholar
  25. 25.
    Moggridge GD, Parent P, Tourillion G (1994) Clays Clay Miner 42(4):462–472CrossRefGoogle Scholar
  26. 26.
    Costantino U, Marmottini F, Nocchetti M, Vivani R (1998) Eur J Inorg Chem 1998:1439–1446CrossRefGoogle Scholar
  27. 27.
    Comba P, Hambley TW (1995) Molecular Modeling of Inorganic Compounds VCH Verlagsgesselschaft mbH, Weinheim, pp 28–31Google Scholar
  28. 28.
    Rappé AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  29. 29.
    Karasawa N, Goddard WA (1989) J Phys Chem 93:7320–7327CrossRefGoogle Scholar
  30. 30.
    Lennard-Jones JE (1925) Proc Royal Society of London, series A 109(752):584–597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Petr Kovář
    • 1
    Email author
  • M. Pospíšil
    • 1
  • M. Nocchetti
    • 2
  • P. Čapková
    • 1
    • 4
  • Klára Melánová
    • 3
  1. 1.Faculty of Mathematics and PhysicsCharles University PraguePrague 2Czech Republic
  2. 2.Centro di Eccellenza Materiali Innovativi Nanostrutturati, Dipartimento di ChimicaUniversita di PerugiaPerugiaItaly
  3. 3.Joint Laboratory of Solid State ChemistryUniversity of PardubicePardubiceCzech Republic
  4. 4.Institute of Materials ChemistryTechnical University OstravaOstrava - PorubaCzech Republic

Personalised recommendations