Journal of Molecular Modeling

, Volume 13, Issue 9, pp 965–979 | Cite as

AM1* parameters for copper and zinc

Original Paper

Abstract

Our extension of the AM1 semiempirical molecular orbital technique, AM1*, has been parameterized for the elements Cu and Zn. The basis sets for both metals contain a set of d-orbitals. The zinc parameterization uses a filled d-shell to give 12 valence electrons. Thus, AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, Cu, Zn, Zr and Mo. The performance and typical errors of AM1* are discussed for the newly parameterized elements.

Keywords

AM1* Copper parameters Semiempirical MO-theory Zinc parameters 

Supplementary material

894_2007_214_MOESM1_ESM.pdf (4.2 mb)
ESM 1(PDF 4355 kb)

References

  1. 1.
    Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414CrossRefGoogle Scholar
  2. 2.
    Winget P, Clark T (2005) J Mol Model 11:439−456CrossRefGoogle Scholar
  3. 3.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  4. 4.
    Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089–4094CrossRefGoogle Scholar
  5. 5.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99(15):4899–4907CrossRefGoogle Scholar
  6. 6.
    Thiel W (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 1599Google Scholar
  7. 7.
    Stewart JJP (1989) J Comp Chem 10:209–220CrossRefGoogle Scholar
  8. 8.
    Stewart JJP (1989) J Comp Chem 10:221–264CrossRefGoogle Scholar
  9. 9.
    Stewart JJP (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 2080Google Scholar
  10. 10.
    Linder MC (2002) In: Massaro EJ (ed) Handbook of copper pharmacology and toxicology. Humana Press Inc., Totowa, N. J, pp 3–32CrossRefGoogle Scholar
  11. 11.
    Schürer G, Clark T, van Eldik R (2006) In: Rappoport Z, Marek I (eds) The chemistry of organozinc compounds. Wiley Interscience, Chichester, pp 1–30Google Scholar
  12. 12.
    Bremner I, Beattie JH (1995) Proc Nutrition Soc 54:489–499CrossRefGoogle Scholar
  13. 13.
    Dewar MJS, Merz KM Jr (1986) Organometallics 5:1494–1496CrossRefGoogle Scholar
  14. 14.
    Voityuk AA, Bliznyuk AA (1987) Zhurnal Strukturnoi Khimii 28:20–24Google Scholar
  15. 15.
    Thiel W, Voityuk AA (1996) J Phys Chem 100:616–626CrossRefGoogle Scholar
  16. 16.
    Dewar MJS, Merz KM Jr (1988) Organometallics 7:522–524CrossRefGoogle Scholar
  17. 17.
    Brothers EN, Suarez D, Deerfield DW II, Merz KM Jr (2004) J Comp Chem 25:1677–1692CrossRefGoogle Scholar
  18. 18.
    See, for instance, Nam K, Cui Q, Gao J, York DM (2007) J Chem Theory Comput 3:486–504CrossRefGoogle Scholar
  19. 19.
    Tejero I, González-Lafont À, Lluch JM (2007) J Comput Chem 28:997–1005CrossRefGoogle Scholar
  20. 20.
    McNamara JP, Sundararajan M, Hillier IH, Ge J, Campbell A, Morgado C (2006) J Comput Chem 27:1307–1323CrossRefGoogle Scholar
  21. 21.
    Winget P, Clark T (2004) J Comp Chem 25:725–733CrossRefGoogle Scholar
  22. 22.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (http://webbook.nist.gov/), Linstrom P, Mallard W, National Institute of Standards and Technology: Gaithersburg MD, 20899, 2003
  23. 23.
    Lide DR (2005) CRC handbook of chemistry and physics, 87th edn. Taylor and Francis CRC Press, Boca Raton, FloridaGoogle Scholar
  24. 24.
    Hildenbrand DJ (1968) J Chem Phys 48:2457–2459CrossRefGoogle Scholar
  25. 25.
    Gaussian 03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford CTGoogle Scholar
  26. 26.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  27. 27.
    Hay PJ, Wadt WR (1985) J Chem Phys 82(1):270–283CrossRefGoogle Scholar
  28. 28.
    Hay PJ, Wadt WR (1985) J Chem Phys 82(1):284–298CrossRefGoogle Scholar
  29. 29.
    Hay PJ, Wadt WR (1985) J Chem Phys 82(1):299–310CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  31. 31.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  32. 32.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  33. 33.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  34. 34.
    Cizek J (1969) Adv Chem Phys 14:35–89CrossRefGoogle Scholar
  35. 35.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  36. 36.
    Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382–7387CrossRefGoogle Scholar
  37. 37.
    Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703CrossRefGoogle Scholar
  38. 38.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  39. 39.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  40. 40.
    Wachters AJH (1970) J Chem Phys 52:1033–1036CrossRefGoogle Scholar
  41. 41.
    Hay PJ (1977) J Chem Phys 66:4377–4384CrossRefGoogle Scholar
  42. 42.
    Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062–1065CrossRefGoogle Scholar
  43. 43.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294–301CrossRefGoogle Scholar
  44. 44.
    Cambridge Structural Database, Version 5.28 (2007) Cambridge Crystallographic Data Centre, Cambridge, UKGoogle Scholar
  45. 45.
    Clark T, Alex A, Beck B, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2005) Computer-chemie-centrum. Universität Erlangen-Nürnberg, ErlangenGoogle Scholar
  46. 46.
    Stewart JJP (2002) FQS Poland, KrakowGoogle Scholar
  47. 47.
  48. 48.
    Heisterberg D (1992) Quatfit, Ohio Supercomputer Center, Columbus, OHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations