Journal of Molecular Modeling

, Volume 13, Issue 9, pp 951–963 | Cite as

QSPR modeling of hyperpolarizabilities

  • Alan R. Katritzky
  • Liliana Pacureanu
  • Dimitar Dobchev
  • Mati Karelson
Original Paper

Abstract

The polarizabilities and the first and second hyperpolarizabilities of 219 conjugated organic compounds are modeled by QSPR (quantitative structure activity relationship) based on a large pool of constitutional, topological, electronic and quantum chemical descriptors calculated by CODESSA Pro (comprehensive descriptors for structural and statistical analysis) derived solely from molecular structure. Multilinear models were developed using the BMLR (best multilinear regression) algorithm to relate the experimental (hyper)polarizabilities to their predicted values. The regression equations include AM1 (Austin model 1) calculated (hyper)polarizabilities together with the size, electrostatic and quantum chemical descriptors to compensate for the imprecision of the AM1 computational method. The results emphasize the main factors that influence (hyper)polarizability. All models were validated by the “leave-one-out” method and internal validations that confirmed the stability and good predictive ability.

Figure

Plot of experimental versus predicted second hyperpolarizability values for conjugated aromatic compounds

Keywords

CODESSA Pro Multilinear regression Polarizability QSPR 

Supplementary material

894_2007_209_MOESM1_ESM.doc (505 kb)
Table 1Experimental and predicted (hyper)polarizability values for conjugated organic compounds that display NLO properties are available (DOC 505 kb) (doi:10.1007/s00894-007-0209-4)

References

  1. 1.
    Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043CrossRefGoogle Scholar
  2. 2.
    Devillers J, Balaban AT (1999) Topological indices and related descriptors in QSAR/QSPR. Gordon & Breach, New York, pp 59–167Google Scholar
  3. 3.
    Bosque R, Sales J (2002) J Chem Inf Comput Sci 42:1154–1163CrossRefGoogle Scholar
  4. 4.
    Davis D, Sreekumar K, Sajeev Y, Pal S (2005) J Phys Chem B 109:14093–14101CrossRefGoogle Scholar
  5. 5.
    Marder SR, Kippelen B, Jen AKY, Peyghambarian N (1997) Nature 388:845–851CrossRefGoogle Scholar
  6. 6.
    Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668CrossRefGoogle Scholar
  7. 7.
    Zyss J, Ledoux I (1994) Chem Rev 94:77–105CrossRefGoogle Scholar
  8. 8.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242CrossRefGoogle Scholar
  9. 9.
    Adant C, Brédas JL, Dupuis M (1997) J Phys Chem A 101:3025–3031CrossRefGoogle Scholar
  10. 10.
    Jensen L, Åstrand PO, Sylvester-Hvid KO, Mikkelsen KV (2000) J Phys Chem A 104:1563–1569CrossRefGoogle Scholar
  11. 11.
    Hansen T, Jensen L, Åstrand PO, Mikkelsen KV (2005) J Chem Theory Comput 1:626–633CrossRefGoogle Scholar
  12. 12.
    Cheng LK, Tam W, Stevenson SH, Meredith GR, Rikken G, Marder SR (1991) J Phys Chem 95:10631–10643CrossRefGoogle Scholar
  13. 13.
    Cheng LK, Tam W, Marder SR, Steigman AE, Rikken G, Spangler CW (1991) J Phys Chem 95:10643–10652CrossRefGoogle Scholar
  14. 14.
    Ganthy TK, Gosh SK (1996) J Phys Chem 100:12295–12298CrossRefGoogle Scholar
  15. 15.
    Chattaraj PK, Fuentealba P, Jaque P, Toro-Labbé A (1999) J Phys Chem 103:9307–9312Google Scholar
  16. 16.
    Pogliani L (2003) New J Chem 27:919–927CrossRefGoogle Scholar
  17. 17.
    Carrasco-Velar R, Padrón JA, Galvez J (2004) J Pharm Pharmaceut Sci 7:19–26Google Scholar
  18. 18.
    Padrón JA, Carasco R, Pellón RF (2002) J Pharm Pharmaceut Sci 5:258–266Google Scholar
  19. 19.
    Verma RP, Hansch C (2005) Bioorg Med Chem 13:2355–2372CrossRefGoogle Scholar
  20. 20.
    Hansch C, Kurup A (2003) J Chem Inf Comput Sci 43:1647–1651CrossRefGoogle Scholar
  21. 21.
    Hansch C, Steinmetz WE, Leo AJ, Mekapati SB, Kurup A, Hoekman D (2003) J Chem Inf Comput Sci 43:120–125CrossRefGoogle Scholar
  22. 22.
    Verma RP, Kurup A, Hansch C (2005) Bioorg Med Chem 13:237–255CrossRefGoogle Scholar
  23. 23.
    Jha PC, Anusooya Pati Y, Ramasesha S (2005) Mol Phys 103:1859–1873CrossRefGoogle Scholar
  24. 24.
    Marder SR, Gorman CB, Meyers F, Perry JW, Bourhill G, Brédas JL, Pierce BMA (1994) Science 265:632–635CrossRefGoogle Scholar
  25. 25.
    Wu W, Ye C, Wang D (2003) ARKIVOC 59–69Google Scholar
  26. 26.
    Lučić B, Bašic I, Nadramija D, Milicević A, Trinajstić N, Suzuki T, Petrukin R, Karelson M, Katritzky AR (2002) ARKIVOC 45–49Google Scholar
  27. 27.
    Katritzky AR, Lobanov V, Karelson M (1998) J Chem Inf Comput Sci 38:28–41CrossRefGoogle Scholar
  28. 28.
    Katritzky AR, Fara DC, Hongfang Y, Karelson M (2004) Chem Rev 104:175–198CrossRefGoogle Scholar
  29. 29.
    Katritzky AR, Ignachenko E, Barcock R, Lobanov V, Karelson M (1994) Anal Chem 66:1799–1807CrossRefGoogle Scholar
  30. 30.
    Huibers PDT, Lobanov VS, Katritzky AR, Shah OD, Karelson M (1996) Langmuir 12:1462–1470CrossRefGoogle Scholar
  31. 31.
    Huibers PDT, Lobanov VS, Katritzky AR, Shah OD (1997) J Colloid Interface Sci 187:113–120CrossRefGoogle Scholar
  32. 32.
    Katritzky AR, Fara DC, Yang H, Karelson M, Suzuki T, Solov’ev VP, Varnek A (2004) J Chem Inf Comp Sci 44:529–541CrossRefGoogle Scholar
  33. 33.
    Katritzky AR, Kuanar M, Fara DC, Karelson M, Acree WE (2004) Bioorg Med Chem 12:4375–4748CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, New York, pp 229–230, 280–282Google Scholar
  38. 38.
    Mikkelsen KV, Luo Y, Ågren H, Jørgensen P (1994) J Chem Phys 100:8240–8250CrossRefGoogle Scholar
  39. 39.
    Osted A, Kongsted J, Mikkelsen KV, Christiansen O (2004) J Phys Chem A 108:8646–8658CrossRefGoogle Scholar
  40. 40.
    Sylvester-Hvid KO, Mikkelsen KV, Jonsson D, Norman P, Ågren H (1998) J Chem Phys 109:5576–5584CrossRefGoogle Scholar
  41. 41.
    Poulsen TD, Ogilby PR, Mikkelsen KV (2002) J Chem Phys 116:3730–3738CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Hinchliffe A, Nikolaidi B, Machado HJS (2004) Int J Mol Sci 5:224–238CrossRefGoogle Scholar
  44. 44.
    Kagawa H, Ichimura A, Kamka NA, Mori K (2001) J Mol Struct (THEOCHEM) 546:127–141CrossRefGoogle Scholar
  45. 45.
    Zyss J (1979) J Chem Phys 70:3333–3340CrossRefGoogle Scholar
  46. 46.
    Marder SR, Kippelen B, Jen AKY, Peyghambarian N (1997) Nature 388:845–851CrossRefGoogle Scholar
  47. 47.
    Karna SP, Dupuis M (1991) Int J Comput Chem 12:487–504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alan R. Katritzky
    • 1
  • Liliana Pacureanu
    • 1
  • Dimitar Dobchev
    • 1
    • 2
  • Mati Karelson
    • 2
    • 3
  1. 1.Center for Heterocyclic Compounds, Department of ChemistryUniversity of FloridaGainesvilleUSA
  2. 2.Department of ChemistryTallinn University of TechnologyTallinnEstonia
  3. 3.Department of ChemistryUniversity of TartuTartuEstonia

Personalised recommendations