Journal of Molecular Modeling

, Volume 13, Issue 6–7, pp 793–800 | Cite as

Theoretical study of geometrical and nonlinear optical properties of pyridinum N-phenolate betaine dyes

  • Wawrzyniec Niewodniczański
  • Wojciech Bartkowiak
Original Paper

Abstract

This paper presents an ab initio quantum chemical investigation of the geometrical structures and the non-linear optical properties (NLO) of three structural isomers of pyridinium N-phenolate betaine dye. The ground state geometrical parameters and the first-order hyperpolarizabilities were calculated using the Hartree-Fock (HF) as well as the second-order perturbation Møller-Pleset (MP2) method with the 6–31G, 6–31G(d), 6–31G(d,p), 6–31+G(d), 6–31++G(d,p), 6–311+G(d), aug-cc-PVDZ and the recently developed Z3PolX basis sets. Moreover, the first-order hyperpolarizability was calculated at the coupled cluster singles and doubles (CCSD/6–31+G(d)) level of theory. The analysis of the results of calculations for the investigated isomers indicates that there are important differences in their NLO activities. Additionally, it was shown that Z3PolX basis set works reasonable well for betaine dyes.

Figure

The molecules investigated in the present study. (Figure prepared using Mercury 1.5.)

Keywords

Basis set effect Betaine dyes Electron correlation Non-linear optical properties Torsional barrier 

Notes

Acknowledgements

Calculations were carried out using resources at Wroclaw (WCSS), Poznań (PCSS) and Mississippi Center for Supercomputing Research (MCSR). The authors would like to thank Wroclaw University of Technology for support.

References

  1. 1.
    Brèdas JL, Adant C, Tackx P, Persoon A (1994) Chem Rev 94:243–278CrossRefGoogle Scholar
  2. 2.
    Nalwa HS, Miyata S (eds) (1997) Nonlinear optics of organic molecules and polymers. CRC, Boca RatonGoogle Scholar
  3. 3.
    Bishop DM, Norman P (2000) In: Nalwa HS (ed) Nonlinear optical materials, vol 9, ch 1 of Hanbook of Advanced Electronic and Photonic Materials and Devices. Academic, San Diego,Google Scholar
  4. 4.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242CrossRefGoogle Scholar
  5. 5.
    Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668CrossRefGoogle Scholar
  6. 6.
    Reichardt C (1992) Chem Rev Soc (London) 21:147–153Google Scholar
  7. 7.
    Reichardt C (1994) Chem Rev 94:2319–2356CrossRefGoogle Scholar
  8. 8.
    Reichardt C (1998) Solvents and solvents effects in orgainc chemistry. VCH, WeinheimGoogle Scholar
  9. 9.
    Reichardt C (2004) Pure Appl Chem 76:1903–1919Google Scholar
  10. 10.
    Paley MS, Meehan EJ, Smith CD, Rosenberger FE, Howard SC, Harris JM (1989) J Org Chem 54:3432–3436CrossRefGoogle Scholar
  11. 11.
    Paley MS, Harris JM (1991) J Org Chem 56:568–574CrossRefGoogle Scholar
  12. 12.
    Abe J, Shirai Y (1996) J Am Chem Soc 118:4705–4706CrossRefGoogle Scholar
  13. 13.
    Abe J, Shirai Y, Nemoto N, Miyata F, Nagase Y (1997) J Phys Chem B 101:576–582CrossRefGoogle Scholar
  14. 14.
    Abe J, Nemoto N, Nagase Y, Shirai Y (1996) Chem Phys Lett 261:18–22CrossRefGoogle Scholar
  15. 15.
    Abe J, Shirai Y, Nemoto N, Miyata F, Nagase Y (1997) J Phys Chem B 101:1910–1915CrossRefGoogle Scholar
  16. 16.
    Laxmikanth Rao J, Bhanuprakash K (1998) J Mol Struct (THEOCHEM) 458:269–273CrossRefGoogle Scholar
  17. 17.
    Sitha S, Laxmikanth Rao J, Bhanuprakash K, Choudary BM (2001) J Phys Chem A 105:8727–8733CrossRefGoogle Scholar
  18. 18.
    Sworakowski J, Lipiński J, Ziolek L, Palewska K, Nešpůrek S (1996) J Phys Chem A 100:12288–12294CrossRefGoogle Scholar
  19. 19.
    Bartkowiak W, Lipiński J (1998) J Phys Chem A 102:5236–5240CrossRefGoogle Scholar
  20. 20.
    Lipiński J, Bartkowiak W (1999) Chem Phys 245:263–276CrossRefGoogle Scholar
  21. 21.
    Mente SR, Maroncelli M (1999) J Phys Chem B 103:7704–7718CrossRefGoogle Scholar
  22. 22.
    Ishida T, Rossky P (2001) J Phys Chem A 105:558–565CrossRefGoogle Scholar
  23. 23.
    Zaleśny R, Bartkowiak W, Styrcz S, Leszczynski J (2002) J Phys Chem A 106:4032–4037CrossRefGoogle Scholar
  24. 24.
    Morley JO, Padfield J (2002) J Chem Soc Perkin Trans 2:1698–1707Google Scholar
  25. 25.
    Hernandes MZ, Longo R, Coutihno K, Canuto S (2004) Phys Chem Chem Phys 6:2088–2092CrossRefGoogle Scholar
  26. 26.
    Jasien PG, Weber LL (2001) J Mol Struct (THEOCHEM) 572:203–212CrossRefGoogle Scholar
  27. 27.
    Hogiu S, Dreyer J, Pfeiffer M, Brzezinka KW, Wencke W (2000) J Raman Spectrosc 31:797–803CrossRefGoogle Scholar
  28. 28.
    Fabian J, Rosquete GA, Montero-Cabrera LA (1999) J Mol Struct (THEOCHEM) 469:163–176CrossRefGoogle Scholar
  29. 29.
    Lobaugh J, Rossky P (1999) J Phys Chem A 103:9432–9447CrossRefGoogle Scholar
  30. 30.
    Hwang H, Rossky P (2004) J Phys Chem A 108:2607–2616CrossRefGoogle Scholar
  31. 31.
    Hwang H, Rossky P (2004) J Phys Chem B 108:6723–6732CrossRefGoogle Scholar
  32. 32.
    González D, Neilands O, Rezende MC (1999) J Chem Soc Perkin Trans 2:713–717Google Scholar
  33. 33.
    Niewodniczński W, Bartkowiak W, Leszczynski J (2005) J Mol Model 11:392–397CrossRefGoogle Scholar
  34. 34.
    Bartkowiak W, Niewodniczński W, Misiaszek T, Zaleśny R (2005) Chem Phys Lett 441:8–13CrossRefGoogle Scholar
  35. 35.
    Caricato M, Mennucci B, Tomasi J (2004) J Phys Chem A 108:6248–6256CrossRefGoogle Scholar
  36. 36.
    Spassova M, Enchev V (2004) Chem Phys 298:29–36CrossRefGoogle Scholar
  37. 37.
    Benkova Z, Sadlej AJ, Oakes RE, Bell SEJ (2005) J Comput Chem 26:145–153CrossRefGoogle Scholar
  38. 38.
    Benková Z, Sadlej AJ, Oakes RE, Bell SEJ (2005) Theor Chem Acc 113:238–247CrossRefGoogle Scholar
  39. 39.
    Oakes RE, Bell SEJ, Benkova Z, Sadlej AJ (2005) J Comput Chem 26:154–159CrossRefGoogle Scholar
  40. 40.
    Zaleśny R, Bartkowiak W (2005) Int J Quantum Chem 104:660–666CrossRefGoogle Scholar
  41. 41.
    Benková Z, Černušák I, Zahradník P (2006) Mol Phys 104:2011–2026CrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg J, Zakrzewski V, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  43. 43.
    Schmit MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1463CrossRefGoogle Scholar
  44. 44.
    (2005) Dalton, an ab initio electronic structure program, release 2.0Google Scholar
  45. 45.
    Torrent-Sucarrat M, Sol M, Duran M, Luis JM, Kirtman B (2003) J Chem Phys 118:711–718CrossRefGoogle Scholar
  46. 46.
    Yang M, Jacquemin D, Champagne B (2002) Phys Chem Chem Phys 4:5566–5571CrossRefGoogle Scholar
  47. 47.
    Kurtz H, Dudis D (1998) Review in computational chemistry, vol 12. VCH, New York, p 241CrossRefGoogle Scholar
  48. 48.
    Bishop DM (1991) J Chem Phys 95:5489CrossRefGoogle Scholar
  49. 49.
    Rice JE, Handy NC (1991) J Chem Phys 94:4959–4971CrossRefGoogle Scholar
  50. 50.
    Rice JE, Handy NC (1992) Int J Quantum Chem 43:91–118CrossRefGoogle Scholar
  51. 51.
    Willetts A, Rice JE, Burland DM, Shelton DP (1992) J Chem Phys 97:7590–7599CrossRefGoogle Scholar
  52. 52.
    Williams T, Kelley C et al (2004) gnuplot 4.0 patchlevel 0Google Scholar
  53. 53.
    Wojtas Ł, Pawlica D, Stadnicka K (2006) J Mol Struct 785:14–20CrossRefGoogle Scholar
  54. 54.
    Caricato M, Mennucci B, Tomasi J (2006) Mol Phys 104:875–887CrossRefGoogle Scholar
  55. 55.
    Pecul M, Pawłowski F, Jørgensen P, Köhn A, Hättig C (2006) J Chem Phys 124:114101–114111CrossRefGoogle Scholar
  56. 56.
    Larsen H, Olsen J, Hättig C, Jørgensen P, Christiansen O, Gauss J (1999) J Chem Phys 111:1917–1925CrossRefGoogle Scholar
  57. 57.
    Sim F, Chin S, Dupuis M, Rice JE (1993) J Phys Chem 97:1158–1163CrossRefGoogle Scholar
  58. 58.
    Skwara B, Bartkowiak W, Zawada A, Góra RW, Leszczynski J (2007) Chem Phys Lett 436:116–123CrossRefGoogle Scholar
  59. 59.
    Morley JO, Pugh D (1989) Spec Publ-R Soc Chem 69:28–39Google Scholar
  60. 60.
    Moylan CR, Swanson SA, Walsh CA, Thackara JI, Twieg RJ, Miller RD, Lee VY (1993) SPIE Proc 2025:192–201Google Scholar
  61. 61.
    Acebal P, Blaya S, Carreto L (2003) Chem Phys Lett 382:489–495CrossRefGoogle Scholar
  62. 62.
    Lipiński J (1988) J Int J Quantum Chem 34:423–435CrossRefGoogle Scholar
  63. 63.
    Sekino H, Bartlett R (1991) J Chem Phys 94:3665–3669CrossRefGoogle Scholar
  64. 64.
    Dalskov EK, Jørgen H, Jensen Å, Oddershede J (1997) Mol Phys 90:3–14CrossRefGoogle Scholar
  65. 65.
    Fabian J (2001) Theor Chem Acc 106:199–217Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Wawrzyniec Niewodniczański
    • 1
  • Wojciech Bartkowiak
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryWroclaw University of TechnologyWrocławPoland

Personalised recommendations