Advertisement

Journal of Molecular Modeling

, Volume 13, Issue 5, pp 611–627 | Cite as

Semi-empirical topological method for prediction of the gas chromatographic relative retention times of Polybrominated Diphenyl Ethers (PBDEs)

  • Hong-Yan Liu
  • Shu-Shen LiuEmail author
  • Li-Tang Qin
Original Paper

Abstract

Quantitative structure-retention relationship (QSRR) studies have proved to be a valuable approach in the prediction of the gas chromatographic relative retention time (GC-RRT) of organic chemicals. Polybrominated diphenyl ether (PBDE) congeners are now ubiquitous environmental pollutants. Of the 209 possible PBDE congeners, 126 have been synthesized and their retention-time data on seven different stationary phases has been determined [Korytár et al.:J Chromatography A 1065:239–249, (2005)]. To estimate and predict the GC-RRT values of all 209 PBDEs on different stationary phases, 17 molecular descriptors from the semi-experience algorithm in MOPAC program and the topological structures of PBDE molecules were calculated. By means of the VSMP (variable selection and modeling based on prediction) program [Liu et al.:J Chem Inf Comput Sci 43:964–969, (2003)], six optimal descriptors were selected to develop a QSRR model for the prediction of GC-RRT of PBDE. The descriptors contain some energy information (such as the energy of the lowest unoccupied molecular orbital and highest occupied molecular orbital) and topological information (the number of ortho-, meta-, and para- substituted bromine atoms) as well as the molecular weight (lnM W ). All the models developed were cross-validated using leave-one-out (LOO). For seven GC stationary phases, the estimated correlation coefficients (r 2 ) are all more than 0.985 but for the column CP-Sil 19 (r 2  = 0.9392) and LOO-validated correlation coefficients (q 2 ) all more than 0.985 but for the column CP-Sil 19 (q 2  = 0.9345).

Keywords

Polybrominated diphenyl ethers (PBDEs) Relative retention time(RRTVariable selection and modeling based on prediction (VSMP) QSRR 

Notes

Acknowledgments

We are especially grateful to 973 program (No. 2003CB415002) and Shanghai Basic Research Program (No. 06JC14067) and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No. 200355) and Guangxi Thousands of Talents Program (No. 2003208) for their financial supports.

References

  1. 1.
    Viberg H, Fredriksson A, Eriksson P (2003) Toxicol Appl Pharmacol 192:95–106CrossRefGoogle Scholar
  2. 2.
    Chen JW, Harner T, Yang P, Quan X, Chen S, Schramm KW, Kettrup A (2003) Chemosphere 51:577–584CrossRefGoogle Scholar
  3. 3.
    de Wit CA (2002) Chemoshphere 46:583–624CrossRefGoogle Scholar
  4. 4.
    McDonald TA (2002) Chemosphere 46:745–755CrossRefGoogle Scholar
  5. 5.
    Strandberg B, Dodder NG, Basu I, Hites RA (2001) Environ Sci Technol 35:1075–1083CrossRefGoogle Scholar
  6. 6.
    Manchester-Nessvig JB, Valters K, Sonzogni WC (2001) Environ Sci Technol 35:1072–1077CrossRefGoogle Scholar
  7. 7.
    Palm A, Cousins LT (2002) Environ Pollut 117:195–213CrossRefGoogle Scholar
  8. 8.
    Domingo JL (2004) J Chromatogr A 1054:321–326CrossRefGoogle Scholar
  9. 9.
    Darnerud PO, Wong J, Bergman Å, Ilbäck NG (2005) Toxicology 210:159–167CrossRefGoogle Scholar
  10. 10.
    Hallgren S, Darnerud PO (2002) Toxicology 177:227–243CrossRefGoogle Scholar
  11. 11.
    Korytár P, Covaci A, Boer JD, Gelbin A, Brinkman UAT (2005) J Chromatogr A 1065:239–249CrossRefGoogle Scholar
  12. 12.
    Rayne S, Ikonomou MG (2003) J Chromatogr A 1016:235–248CrossRefGoogle Scholar
  13. 13.
    Liu SS, Cao CZ, Li ZL (1998) J Chem Inf Comput Sci 38:387–394CrossRefGoogle Scholar
  14. 14.
    Liu SS, Yin CS, Cai SX, Li ZL (2001) J Chem Inf Comput Sci 41:321–329CrossRefGoogle Scholar
  15. 15.
    Liu SS (2005) Structural characterization of organic compounds by the molecular electronegativity distance vector (MEDV). Chinese Higher Education Press, BeijingGoogle Scholar
  16. 16.
    Liu SS, Liu Y, Yin DQ, Wang LS (2005) Chin Chem Lett 16:1559–1662Google Scholar
  17. 17.
    Wang YW, Li A, Liu HX, Zhang QH, Ma WP, Song WL, Jiang GB (2006 ) J Chromatogr A 1103:314–328CrossRefGoogle Scholar
  18. 18.
    Wang YW, Liu HX, Zhao CY, Liu HX, Cai ZW, Jiang GB (2005) Environ Sci Technol 39:4961–4966CrossRefGoogle Scholar
  19. 19.
    Liu SS, Cui SH, Shi YY, Wang LS (2002) Internet Electron J Mol Des 1:610–619Google Scholar
  20. 20.
    Liu SS, Liu HL, Yin CS, Wang LS (2003) J Chem Inf Comput Sci 43:964–969CrossRefGoogle Scholar
  21. 21.
    Liu SS, Yin DQ, Cui SH, Wang LS (2005) Chin J Chem 23:622–626CrossRefGoogle Scholar
  22. 22.
    Liu SS, Liu Y, Yin DQ, Wang XD, Wang LS (2006) J Sep Sci 29:296–301CrossRefGoogle Scholar
  23. 23.
    Makino M (1999) Chemosphere 9:893–903CrossRefGoogle Scholar
  24. 24.
    Tuppurainen K, Ruuskanen J (2000) Chemosphere 41:843–848CrossRefGoogle Scholar
  25. 25.
    Rayne S, Ikonomou MG (2003) Anal Chem 75:1049–1057CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Material and Chemistry EngineeringGuilin University of TechnologyGuilinPeople’s Republic of China
  2. 2.Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and TechnologyTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations