Journal of Molecular Modeling

, Volume 13, Issue 6–7, pp 677–683 | Cite as

The molecular basis of urokinase inhibition: from the nonempirical analysis of intermolecular interactions to the prediction of binding affinity

  • Renata Grzywa
  • Edyta Dyguda-Kazimierowicz
  • Marcin Sieńczyk
  • Mikołaj Feliks
  • W. Andrzej Sokalski
  • Józef Oleksyszyn
Original Paper


Urokinase-type plasminogen activator (uPA) is a trypsin-like serine protease that plays a crucial role in angiogenesis process. In addition to its physiological role in healthy organisms, angiogenesis is extremely important in cancer growth and metastasis, resulting in numerous attempts to understand its control and to develop new approaches to anticancer therapy. The α-aminoalkylphosphonate diphenyl esters are well known as highly efficient serine protease inhibitors. However, their mode of binding has not been verified experimentally in details. For a group of average and potent phosphonic inhibitors of urokinase, flexible docking calculations were performed to gain an insight into the active site interactions responsible for observed enzyme inhibition. The docking results are consistent with the previously suggested mode of inhibitors binding. Subsequently, rigorous ab initio study of binding energy was carried out, followed by its decomposition according to the variation–perturbation procedure to reveal stabilization energy constituents with clear physical meaning. Availability of the experimental inhibitory activities and comparison with theoretical binding energy allows for the validation of theoretical models of inhibition, as well as estimation of the possible potential for binding affinity prediction. Since the docking results accompanied by molecular mechanics optimization suggested that several crucial active site contacts were too short, the optimal distances corresponding to the minimum ab initio interaction energy were also evaluated. Despite the deficiencies of force field-optimized enzyme-inhibitor structures, satisfactory agreement with experimental inhibitory activity was obtained for the electrostatic interaction energy, suggesting its possible application in the binding affinity prediction.


The comparison of an arrangement of inhibitors within uPA active. Amino acid residues form S1 pocket that binds the variable part of inhibitor molecules


Urokinase uPA inhibitor Docking FlexX Interaction energy Electrostatic interactions 



This work was supported by the Wrocław University of Technology. Calculations were performed in Wrocław (WCSS) and Poznań (PCSS) Centers for Supercomputing and Networking as well as Interdisciplinary Centre for Mathematical and Computational Modeling (ICM) in Warsaw.


  1. 1.
    Liotta LA, Kohn EC (2001) Nature 411:375–379CrossRefGoogle Scholar
  2. 2.
    Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Trends Cell Biol 8:51–54CrossRefGoogle Scholar
  3. 3.
    Danø K, Andreasen PA, Grøndhal-Hansen J, Kristensen P, Nielsen LS, Skriver L (1985) Adv Cancer Res 44:139–266CrossRefGoogle Scholar
  4. 4.
    Andreasen PA, Kjøller L, Christensen L, Duffy MJ (1997) Int J Cancer 72:1–22CrossRefGoogle Scholar
  5. 5.
    Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Crit Rev Oral Biol Med 4:197–250Google Scholar
  6. 6.
    Murphy G, Gavrilovic J (1999) Curr Opin Cell Biol 11:614–621CrossRefGoogle Scholar
  7. 7.
    Nagase H, Suzuki K, Enghild JJ, Salvesen G (1991) Biomed Biochim Acta 50:749–754Google Scholar
  8. 8.
    Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) J Biol Chem 274:13066–13076CrossRefGoogle Scholar
  9. 9.
    Folkman J (1995) Nat Med 1:27–31CrossRefGoogle Scholar
  10. 10.
    Rockway TW, Giranda VL (2003) Curr Pharm Des 9:1483–1498CrossRefGoogle Scholar
  11. 11.
    Oleksyszyn J, Subotkowska L, Mastalerz P (1979) Synthesis 985–986Google Scholar
  12. 12.
    Oleksyszyn J, Powers JC (1989) Biochem Biophys Res Commun 161:143–149CrossRefGoogle Scholar
  13. 13.
    Oleksyszyn J, Powers JC (1994) Amino acid and peptide phosphonate derivatives as specific inhibitors of serine peptidases. In: Barret AJ (ed) Methods in Enzymology, Vol. 244. Academic Press, San Diego, pp 423–441Google Scholar
  14. 14.
    Oleksyszyn J, Powers JC (1991) Biochemistry 30:485–493CrossRefGoogle Scholar
  15. 15.
    Oleksyszyn J (2000) Aminophosphonic and aminophosphinic acid derivatives in the design of transition state analogue inhibitors: biomedical opportunities and limitations. In: Kukhar VP, Hudson HR (eds) Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Wiley, Chichester, pp 537–558Google Scholar
  16. 16.
    Fastrez J, Jespers L, Lison D, Renard M, Sonveaux E (1989) Tetrahedron Lett 30:6861–6864CrossRefGoogle Scholar
  17. 17.
    Joosens J, Van der Veken P, Lambeir A-M, Augustyns K, Haemers A (2004) J Med Chem 47:2411–2413CrossRefGoogle Scholar
  18. 18.
    Joossens J, Van der Veken P, Surpateanu G, Lambeir AM, El-Sayed I, Ali OM, Augustyns K, Haemers A (2006) J Med Chem 49:5785–5793CrossRefGoogle Scholar
  19. 19.
    Bertrand JA, Oleksyszyn J, Kam CM, Boduszek B, Presnell S, Plaskon RR, Suddath FL, Powers JC, Williams LD (1996) Biochemistry 35:3147–3155CrossRefGoogle Scholar
  20. 20.
    Spraggon G, Phillips C, Nowak UK, Ponting CP, Saunders D, Dobson CM, Stuart DI, Jones EY (1995) Structure 3:681–691CrossRefGoogle Scholar
  21. 21.
    Oleksyszyn J, Boduszek B, Kam C-M, Powers JC (1994) J Med Chem 37:226–231CrossRefGoogle Scholar
  22. 22.
    Sieńczyk M Doctoral thesis (2006) WrocławGoogle Scholar
  23. 23.
    Moreira IS, Fernandes PA, Ramos MJ (2007) Computational determination of the relative free energy of binding. In: Sokalski WA (ed) Molecular materials with specific interactions - modeling and design, series: challenges and advances in computational chemistry and physics, vol. 4. Springer, Berlin Heidelberg New York, pp 305–340CrossRefGoogle Scholar
  24. 24.
    Dyguda E, Grembecka J, Sokalski WA, Leszczyński J (2005) J Am Chem Soc 126:1658–1659CrossRefGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JR, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, Wallingford CTGoogle Scholar
  26. 26.
    Clark M, Cramer RD, Van Opdenbosch N (1989) J Comp Chem 10:982–1012CrossRefGoogle Scholar
  27. 27.
    SYBYL 7.1, Tripos, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USAGoogle Scholar
  28. 28.
    Sokalski WA, Roszak S, Pecul K (1988) Chem Phys Lett 153:153–159CrossRefGoogle Scholar
  29. 29.
    Boys FS, Bernardi D (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  30. 30.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  31. 31.
    Zesławska E, Schweinitz A, Karcher A, Sondermann P, Sperl S, Sturzebecher J, Jacob U (2000) J Med Biol 301:465–475Google Scholar
  32. 32.
    Zesławska E, Jacob U, Sturzebecher J, Oleksyn BJ (2006) Bioorg Med Chem Lett 16:228–234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Renata Grzywa
    • 1
  • Edyta Dyguda-Kazimierowicz
    • 1
  • Marcin Sieńczyk
    • 1
  • Mikołaj Feliks
    • 1
  • W. Andrzej Sokalski
    • 1
  • Józef Oleksyszyn
    • 1
  1. 1.Department of ChemistryWrocław University of TechnologyWrocławPoland

Personalised recommendations