Journal of Molecular Modeling

, Volume 13, Issue 6–7, pp 861–864 | Cite as

Interaction of copper organometallic precursors with barrier layers of Ti, Ta and W and their nitrides: a first-principles molecular dynamics study

  • Eduardo Machado
  • Marcin Kaczmarski
  • Benoît Braida
  • Pablo Ordejón
  • Diwakar Garg
  • John Norman
  • Hansong Cheng
Original Paper

Abstract

Processes for the deposition of copper films on transition metal barrier layers by means CVD using organometallic precursors are often found to lead to poor adhesion characteristics of the grown film. By means of first-principles molecular dynamics simulations, we show that the source of the problem is the strong reactivity of the surfaces toward the precursors, which decompose spontaneously upon contact with the surface leading to contamination of the interface. Our simulations consider Ti, Ta, and W as barrier layers, and Cu(hfac)-(tmvs) as precursor. In contrast, we show that surfaces of these metals properly passivated with nitrogen, in such a way that only N atoms are exposed on the surface, are much less active and do not lead to decomposition of the precursor. We propose this passivation procedure as a practical solution to the adhesion problem.

Figure

CupraSelect on the WN (100) surface

Keywords

Chemical vapor deposition Copper films CupraSelect Ab initio molecular dynamics 

References

  1. 1.
    Norman AT, Muratore BA (1992) U. S. Patent No. 5,085,731Google Scholar
  2. 2.
    Cavallotti C, Gupta V, Sieber C, Jensen KF (2003) Phys Chem Chem Phys 5:2818–2827CrossRefGoogle Scholar
  3. 3.
    Gandikota S, Voss S, Tao R, Duboust A, Cong D, Chen LY, Ramaswami S, Carl D (2000) Microelectron Eng 50:547–553CrossRefGoogle Scholar
  4. 4.
    Voss S, Gandikota S, Chen L-Y, Tao R, Cong D, Duboust A, Yoshida N, Ramaswami S (2000) Microelectron Eng 50:501–508CrossRefGoogle Scholar
  5. 5.
    Kröger R, Eizenberg M, Cong D, Yoshida N, Chen LY, Ramaswami S, Carl D (1999) J Electrochem Soc 146:3248–3254CrossRefGoogle Scholar
  6. 6.
    Machado E, Kaczmarski M, Ordejon P, Garg D, Norman J, Cheng H (2005) Langmuir 21:7608–7614CrossRefGoogle Scholar
  7. 7.
    Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745CrossRefGoogle Scholar
  8. 8.
    Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441–R10444CrossRefGoogle Scholar
  9. 9.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  10. 10.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  11. 11.
    Nosé S (1984) Mol Phys 52:255–268CrossRefGoogle Scholar
  12. 12.
    Schöenberg N (1954) Acta Chem Scand 8:204–209CrossRefGoogle Scholar
  13. 13.
    Schöenberg N (1954) Acta Chem Scand 8:213–220Google Scholar
  14. 14.
    Khitrova VI (1963) Kristallografiya 8:873–876Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Eduardo Machado
    • 1
  • Marcin Kaczmarski
    • 1
  • Benoît Braida
    • 1
    • 2
  • Pablo Ordejón
    • 1
  • Diwakar Garg
    • 3
  • John Norman
    • 3
  • Hansong Cheng
    • 3
  1. 1.Institut de Ciència de Materials de Barcelona-CSICBarcelonaSpain
  2. 2.CNRS-Laboratoire de Chimie Theorique, tour 22–23Université Pierre et Marie CurieParis Cedex 05France
  3. 3.Computational Modeling Center and Corporate Science and Technology CenterAir Products and Chemicals, Inc.AllentownUSA

Personalised recommendations