Journal of Molecular Modeling

, Volume 13, Issue 2, pp 305–311 | Cite as

An overview of halogen bonding

  • Peter Politzer
  • Pat Lane
  • Monica C. Concha
  • Yuguang Ma
  • Jane S. Murray
Original paper


Halogen bonding (XB) is a type of noncovalent interaction between a halogen atom X in one molecule and a negative site in another. X can be chlorine, bromine or iodine. The strength of the interaction increases in the order Cl<Br<I. After a brief review of experimental evidence relating to halogen bonding, we present an explanation for its occurrence in terms of a region of positive electrostatic potential that is present on the outermost portions of some covalently-bonded halogen atoms. The existence and magnitude of this positive region, which we call the σ-hole, depends upon the relative electron-attracting powers of X and the remainder of its molecule, as well as the degree of sp hybridization of the s unshared electrons of X. The high electronegativity of fluorine and its tendency to undergo significant sp hybridization account for its failure to halogen bond. Some computed XB interaction energies are presented and discussed. Mention is also made of the importance of halogen bonding in biological systems and processes, and in crystal engineering.


The computed B3PW91/6-31G(d,p) electrostatic potential, in kcal mol−1, on the 0.001 electrons/bohr3 surface of NC–C≡C–Cl. The chlorine atom is at the right. The color ranges are: red, more positive than 15; yellow between 7 and 15; green, between 0 and 7; blue, between −10 and 0; purple, more positive than −10.


Halogen bonding Noncovalent interactions Molecular electrostatic potentials 



We would like to express our gratitude to Professor Jaroslav Burda, who very kindly provided facilities at the Charles University in Prague so that we could prepare this paper while most of us were evacuees from Hurricane Katrina, which hit New Orleans on August 29, 2005.


  1. 1.
    Guthrie F (1863) J Chem Soc 16:239–244CrossRefGoogle Scholar
  2. 2.
    Remsen I, Norris JF (1896) Am Chem J 18:90–96Google Scholar
  3. 3.
    Mulliken RS (1952) J Am Chem Soc 74:811–824CrossRefGoogle Scholar
  4. 4.
    Flurry RL Jr (1969) J Phys Chem 69:1927–1933Google Scholar
  5. 5.
    Flurry RL Jr (1969) J Phys Chem 73:2111–2117CrossRefGoogle Scholar
  6. 6.
    Bent HA (1968) Chem Rev 68:587–648CrossRefGoogle Scholar
  7. 7.
    Hassel O (1970) Science 170:497–502CrossRefGoogle Scholar
  8. 8.
    Dumas J-M, Peurichard H, Gomel MJ (1978) Chem Res (S) 54–57Google Scholar
  9. 9.
    Dumas J-M, Geron C, Peurichard H, Gomel M (1976) Bull Soc Chim Fr 720–722Google Scholar
  10. 10.
    Dumas J-M, Kern M, Janier-Dubry JL (1976) Bull Soc Chim Fr 1785–1787Google Scholar
  11. 11.
    Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  12. 12.
    Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214CrossRefGoogle Scholar
  13. 13.
    Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314CrossRefGoogle Scholar
  14. 14.
    Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 51:1075–1083CrossRefGoogle Scholar
  15. 15.
    Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 3640–3647Google Scholar
  16. 16.
    Di Paolo T, Sandorfy C (1974) Chem Phys Lett 26:466–469CrossRefGoogle Scholar
  17. 17.
    Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622CrossRefGoogle Scholar
  18. 18.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64CrossRefGoogle Scholar
  19. 19.
    Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci, Chem Sci 106:267–275Google Scholar
  20. 20.
    Stewart RF (1972) J Chem Phys 57:1664–1668CrossRefGoogle Scholar
  21. 21.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  22. 22.
    Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202Google Scholar
  23. 23.
    Murray JS, Politzer P (1998) J Mol Struct, Theochem 425:107–114CrossRefGoogle Scholar
  24. 24.
    Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165Google Scholar
  25. 25.
    Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676–684CrossRefGoogle Scholar
  26. 26.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  27. 27.
    Hagelin H, Brinck T, Berthelot M, Murray JS, Politzer P (1995) Can J Chem 73:483–488CrossRefGoogle Scholar
  28. 28.
    Weinstein H, Politzer P, Srebrenik S (1975) Theor Chim Acta 38:159–163CrossRefGoogle Scholar
  29. 29.
    Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142Google Scholar
  30. 30.
    Scrocco E, Tomasi J (1973) Top Curr Chem 42:95–170Google Scholar
  31. 31.
    Politzer P, Daiker KC (1981) In: Deb BM (ed) The force concept in chemistry (Ch 6). Van Nostrand, New YorkGoogle Scholar
  32. 32.
    Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry Ch 7 Vol 2. VCH, New YorkGoogle Scholar
  33. 33.
    Politzer P, Harris RR (1970) J Am Chem Soc 92:6451–6454 (and references cited)CrossRefGoogle Scholar
  34. 34.
    Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci 101:16789–16794CrossRefGoogle Scholar
  35. 35.
    Clark T, Hennemann M, Murray JS, Politzer P (2006) J Mol Model DOI 10.1007/s00894-006-0130-2
  36. 36.
    Kutzelnigg W (1984) Angew Chem 96:262–269Google Scholar
  37. 37.
    Kutzelnigg W (1984) Angew Chem, Int Ed Engl 23:272–275CrossRefGoogle Scholar
  38. 38.
    Nyburg SC, Wong-Ng W (1979) Proc Roy Soc (London) A 367:29–45Google Scholar
  39. 39.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918CrossRefGoogle Scholar
  40. 40.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  41. 41.
    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem, A 104:1617–1620CrossRefGoogle Scholar
  42. 42.
    Romaniello P, Lelj F (2002) J Phys Chem, A 106:9114–9119CrossRefGoogle Scholar
  43. 43.
    Larsen DW, Allred AL (1965) J Phys Chem 69:2400–2401Google Scholar
  44. 44.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem, Int Ed Engl 39:1782–1786CrossRefGoogle Scholar
  45. 45.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  46. 46.
    Cody V, Murray-Rust P (1984) J Mol Struct 112:189–199CrossRefGoogle Scholar
  47. 47.
    De Moliner E, Brown NR, Johnson LN (2003) Eur J Biochem 270:3174–3181CrossRefGoogle Scholar
  48. 48.
    Metrangolo P, Pilati T, Resnati G, Stevenazzi A (2003) Curr Opin Colloid Interface Sci 8:215–222CrossRefGoogle Scholar
  49. 49.
    Thallapally PK, Desiraju GR, Bagien-Bencher M, Masse R, Bourgogne C, Nicoud JF (2002) Chem Commun 1052–1053Google Scholar
  50. 50.
    Imakubo T, Tajima N, Tamura M, Kato R, Nishio Y, Kajita K (2003) Synth Met 133–134:181–183. DOI 10.1007/s00894-006-0130-2 CrossRefGoogle Scholar
  51. 51.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:393–394CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Peter Politzer
    • 1
  • Pat Lane
    • 1
  • Monica C. Concha
    • 1
  • Yuguang Ma
    • 2
  • Jane S. Murray
    • 1
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.Department of ChemistryWake Forest UniversityWinston-SalemUSA

Personalised recommendations