Advertisement

Journal of Molecular Modeling

, Volume 13, Issue 2, pp 347–355 | Cite as

Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes

  • Mariusz Mitoraj
  • Artur Michalak
Original paper

Abstract

Natural orbitals for chemical valence (NOCV) are defined as the eigenvectors of the chemical valence operator defined by Nalewajski et al.; they decompose the deformation density (differential density, Δρ) into diagonal contributions. NOCV were used in a description of the chemical bond between the organometallic fragment and the ligand in example transition–metal complexes: heme–CO ([FeN5C20H15]–CO), [Ni–diimine hydride]–ethylene ([N^N–Ni–H]–C2H4, N^N = –NH–CH–CH–NH–), and [Ni(NH3)3]–CO. DFT calculations were performed using gradient-corrected density functional theory (DFT) in the fragments resolution, using the fragment/ligand Kohn–Sham orbitals as a basis set in calculations for the whole fragment–ligand complex. It has been found that NOCV lead to a very compact description of the fragment–ligand bond, with only a few orbitals exhibiting non-zero eigenvalues. Results of NOCV analysis, compared with Mulliken populations analysis and Zigler–Rauk interaction–energy decomposition, demonstrate that the use of the natural valence orbitals allows for a separation of the σ-donation and π-back-donation contributions to the ligand–fragment bond. They can be also useful in comparison of these contributions in different complexes.

Figure

The countours of the deformation density (Δρ) and the donation/back-donation contributions from the pairs of complementary natural orbitals for the heme/CO system

Keywords

Natural orbitals for chemical valence Chemical bond—bonding in transition Metal complexes σ-donation/π-back-donation Dewar–Chatt–Duncanson model 

Notes

Acknowledgment

This work was supported by a research grant from the Ministry of Education and Science in Poland (1130-T09-2005-28).

References

  1. 1.
    Frenking G, Frohlich N (2000) Chem Rev 100:717–774 (and references therein)CrossRefGoogle Scholar
  2. 2.
    Dedieu A (2000) Chem Rev 100:543–600 (and references therein)CrossRefGoogle Scholar
  3. 3.
    Niu S, Hall MB (2000) Chem Rev 100:353–405 (and references therein)CrossRefGoogle Scholar
  4. 4.
    Dewar MJS (1951) Bull Soc Chim 18:C71–C79Google Scholar
  5. 5.
    Chatt J, Duncanson JA (1953) J Chem Soc 3:2939–2943CrossRefGoogle Scholar
  6. 6.
    Cotton FA, Wilkinson G (1988) Advanced Inorganic Chemistry. Wiley, New YorkGoogle Scholar
  7. 7.
    Nalewajski RF, Mrozek J, Formosinho SJ, Varandas AJC (1994) Int J Quant Chem 52:1153–1176CrossRefGoogle Scholar
  8. 8.
    Nalewajski RF, Mrozek J (1994) Int J Quant Chem 51:187–200CrossRefGoogle Scholar
  9. 9.
    Nalewajski RF, Mrozek J (1996) Int J Quant Chem 57:377–389CrossRefGoogle Scholar
  10. 10.
    Nalewajski RF, Mrozek J, Mazur G (1996) Can J Chem 74:1121–1130CrossRefGoogle Scholar
  11. 11.
    Nalewajski RF, Mrozek J, Michalak A (1997) Int J Quant Chem 61:589–601CrossRefGoogle Scholar
  12. 12.
    Nalewajski RF, Mrozek J, Michalak A (1998) Polish J Chem 72:1779–1791Google Scholar
  13. 13.
    Stryer L (1995) Biochemistry. In: Freeman WH (ed) San FranciscoGoogle Scholar
  14. 14.
    Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1203 (and references therein)CrossRefGoogle Scholar
  15. 15.
    Mitoraj M, Michalak A (2005) J Mol Model 11:341–350CrossRefGoogle Scholar
  16. 16.
    Becke A (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  17. 17.
    Perdew JP (1986) Phys Rev B 34:7406–7406CrossRefGoogle Scholar
  18. 18.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  19. 19.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967 (and references therein)CrossRefGoogle Scholar
  20. 20.
    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51CrossRefGoogle Scholar
  21. 21.
    Boerrigter PM, te Velde G, Baerends EJ (1988) Int J Quantum Chem 33:87–113CrossRefGoogle Scholar
  22. 22.
    Versluis L, Ziegler T (1988) J Chem Phys 88:322–328CrossRefGoogle Scholar
  23. 23.
    te Velde G, Baerends EJ (1992) J Comput Phys 99:84–98CrossRefGoogle Scholar
  24. 24.
    Fonesca Geurra C, Visser O, Snijders JG, te Velde G, Baerends EJ (1995) In: Clementi E, Corongiu G (eds) Methods and Techniques in Computational Chemistry METACC-9. STEF: Cagliari, pp 303–395Google Scholar
  25. 25.
    Mulliken RS (1955) J Chem Phys 23:1833–1841CrossRefGoogle Scholar
  26. 26.
    Ziegler T, Rauk A (1978) Theor Chim Acta 46:1–9Google Scholar
  27. 27.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1755–1759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Theoretical Chemistry, Faculty of ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations