Journal of Molecular Modeling

, Volume 13, Issue 2, pp 381–392 | Cite as

Multipole electrostatic potential derived atomic charges in NDDO-methods with spd-basis sets

Original Paper

Abstract

The recently introduced multipole approach for computing the molecular electrostatic potential (MEP) within the semiempirical neglect of diatomic differential overlap (NDDO) framework [Horn AHC, Lin Jr-H., Clark T (2005) Theor Chem Acc 114:159–168] has been used to obtain atomic charges of nearly ab initio quality by scaling the semiempirical MEP. The parameterization set comprised a total of 797 compounds and included not only the newly parameterized AM1* elements Al, Si, P, S, Cl, Ti, Zr, and Mo but also the standard AM1 elements H, C, N, O and F. For comparison, the ZDO-approximated MEP was also calculated analytically in the spd-basis. For the AM1*-optimized structures, single-point calculations at the B3LYP, HF and MP2 levels with the 6-31G(d) and LanL2DZP basis sets were performed to obtain the MEP. The regression analysis of all 12 combinations of semiempirical and ab initio MEP data yielded correlation coefficients of at least 0.99 in all cases. Scaling the analytical and multipole-derived semiempirical MEP by the regression coefficients yielded mean unsigned errors below 2.6 and 1.9 kcal mol−1, respectively. Subsequently, for 22 drug molecules from the World Drug Index, atomic charges were computed according to the RESP procedure using XX/6-31G(d) (XX=B3LYP, HF, MP2) and scaled AM1* multipole MEP; the correlation coefficients obtained are 0.83, 0.85 and 0.83, respectively. Figure: Schematic representation of the atomic charge generation: The molecular electrostatic potential (MEP) is calculated using the AM1* Hamiltonian; then the semiempirical MEP is scaled to DFT or ab initio level, and atomic charges are generated subsequently by the restraint electrostatic potential (RESP) fit method.

Keywords

AM1* Semiempirical MO theory Atomic charges Molecular electrostatic potential Multipole 

Supplementary material

894_2006_137_MOESM1_ESM.pdf (300 kb)
Supplemental data (PDF 306 kb)

References

  1. 1.
    Beck B, Horn A, Carpenter J, Clark T (1998) J Chem Inf Comput Sci 38:1214–1217CrossRefGoogle Scholar
  2. 2.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  3. 3.
    Murray JS, Lane P, Brinck T, Paulsen K, Grince ME, Politzer P (1993) J Phys Chem 97:9369–9373CrossRefGoogle Scholar
  4. 4.
    Murray JS, Politzer P (1998) J Mol Struct (Theochem) 425:107–114CrossRefGoogle Scholar
  5. 5.
    Rauhut G, Clark T (1993) J Comput Chem 14:503–509CrossRefGoogle Scholar
  6. 6.
    Beck B, Rauhut G, Clark T (1994) J Comput Chem 15:1064–1073CrossRefGoogle Scholar
  7. 7.
    Stone AJ (2002) The Theory of Intermolecular Forces. Clarendon, OxfordGoogle Scholar
  8. 8.
    Chipot C, Ángyán JG, Ferenczy GG, Scheraga HA (1993) J Phys Chem 97:6628–6636CrossRefGoogle Scholar
  9. 9.
    Ferenczy GG (1991) J Comput Chem 12:913–917CrossRefGoogle Scholar
  10. 10.
    Ferenczy GG, Winn PJ, Reynolds CA (1997) J Phys Chem A 101:5446–5455CrossRefGoogle Scholar
  11. 11.
    Winn PJ, Ferenczy GG, Reynolds CA (1997) J Phys Chem A 101:5437–5445CrossRefGoogle Scholar
  12. 12.
    Winn PJ, Ferenczy GG, Reynolds CA (1999) J Comput Chem 20:704–712CrossRefGoogle Scholar
  13. 13.
    Horn AHC, Lin J-H, Clark T (2005) Theor Chem Acc 114:159–168CrossRefGoogle Scholar
  14. 14.
    Thiel W (1988) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of Computational Chemistry. Wiley, ChichesterGoogle Scholar
  15. 15.
    Dewar MJS, Thiel W (1977) Theor Chim Acta 46:89–104CrossRefGoogle Scholar
  16. 16.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM Jr, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8. University of California, San FranciscoGoogle Scholar
  17. 17.
    Momany FA (1978) J Phys Chem 82:592–601CrossRefGoogle Scholar
  18. 18.
    Smit PH, Derissen JL, Duijneveldt JL (1979) Mol Phys 37:521–539CrossRefGoogle Scholar
  19. 19.
    Cox SR, Williams DE (1981) J Comput Chem 2:304–323CrossRefGoogle Scholar
  20. 20.
    Singh UC, Kollman PA (1984) J Comput Chem 5:129–145CrossRefGoogle Scholar
  21. 21.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431–439CrossRefGoogle Scholar
  22. 22.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–371CrossRefGoogle Scholar
  23. 23.
    Chirlian LE, Francl MM (1987) J Comput Chem 8:894–905CrossRefGoogle Scholar
  24. 24.
    Merz KM Jr, Besler BH (1990) QCPE Bull 10:15Google Scholar
  25. 25.
    Alhambra C, Luque FJ, Orozco M (1994) J Comput Chem 15:12–22CrossRefGoogle Scholar
  26. 26.
    Cummings PL, Gready JE (1990) Chem Phys Lett 174:355–360CrossRefGoogle Scholar
  27. 27.
    Reynolds CA, Ferenczy GG, Richards WG (1992) J Mol Struct (Theochem) 256:249–269CrossRefGoogle Scholar
  28. 28.
    Ford GP, Wang B (1993) J Comput Chem 14:1101–1111CrossRefGoogle Scholar
  29. 29.
    Bakowies D, Thiel W (1996) J Comput Chem 17:87–108CrossRefGoogle Scholar
  30. 30.
    Beck B, Glenn RC, Clark T (1997) J Comput Chem 18:744–756CrossRefGoogle Scholar
  31. 31.
    Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414CrossRefGoogle Scholar
  32. 32.
    Winget P, Clark T (2005) J Mol Model 11:439–456CrossRefGoogle Scholar
  33. 33.
    Pople JA, Beveridge DL (1970) Approximate Molecular Orbital Theory. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907CrossRefGoogle Scholar
  35. 35.
    Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404CrossRefGoogle Scholar
  36. 36.
    Thiel W, Voityuk AA (1996) Theor Chim Acta 93:315Google Scholar
  37. 37.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  38. 38.
    Stewart JJP (1989) J Comput Chem 10:209–220CrossRefGoogle Scholar
  39. 39.
    Bingham RC, Dewar MJS, Lo DH (1975) J Am Chem Soc 97:1285–1293CrossRefGoogle Scholar
  40. 40.
    Kuznetsov A, Reinhold J (1984) Wiss Z Karl-Marx-Univ Leipzig, Math-Naturwiss R 33:397–403Google Scholar
  41. 41.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  42. 42.
    Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) J Am Chem Soc 115:9620–9631CrossRefGoogle Scholar
  43. 43.
    Brüstle M, Beck B, Schindler T, King W, Mitchell T, Clark T (2002) J Med Chem 45:3345–3355CrossRefGoogle Scholar
  44. 44.
    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2003–2005) VAMP 8. Accelrys Inc Erlangen, San Diego. http://www.accelrys.com
  45. 45.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  46. 46.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  47. 47.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  48. 48.
    Moller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  49. 49.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1996) Ab Initio Molecular Orbital Theory. Wiley, New YorkGoogle Scholar
  50. 50.
    Huzinaga S (1984) Gaussian Basis Sets for Molecular Calculations. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (eds) Modern Theoretical Chemistry. Plenum, New YorkGoogle Scholar
  52. 52.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  53. 53.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  54. 54.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  55. 55.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniel AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford CTGoogle Scholar
  56. 56.
    Weber CF, Puchta R, van Eikema Hommes NJR, Wasserscheid P, van Eldik R (2005) Angew Chem Int Ed 44:6033–6038CrossRefGoogle Scholar
  57. 57.
    Homeyer N, Horn AHC, Lanig H, Sticht H (2006) J Mol Model 11:281–289CrossRefGoogle Scholar
  58. 58.
    Wartha F, Horn AHC, Meiselbach H, Sticht H (2005) J Chem Theory Comput 1:315–324CrossRefGoogle Scholar
  59. 59.
    St.-Amant A, Cornell WD, Kollman PA, Halgren TA (1995) J Comput Chem 16:1483–1506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Computer Chemie CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations