Journal of Molecular Modeling

, Volume 11, Issue 4–5, pp 392–397 | Cite as

Reinvestigation of molecular structure and barrier to internal rotation of pyridinium N-phenolate betaine dye

  • Wawrzyniec Niewodniczański
  • Wojciech Bartkowiak
  • Jerzy Leszczynski
Original Paper


In the present paper, the results of a systematic theoretical study of the molecular structure of 4-(1-pyridinium-1-yl)phenolate betaine are reported. The ground-state molecular structure and the barrier to internal rotation of the betaine dye molecule were calculated ab inito (with Hartree–Fock theory and the second-order of Möller–Plesset method) and with density functional theory (DFT). In order to estimate the complete basis set limit, the calculations of barriers to internal rotations were performed using correlation–consistent basis sets with a maximal cardinal number of four. It was determined that electron correlation is crucial in order to obtain reliable geometries and rotational barriers of the molecule investigated. For the sake of comparison, the results of calculations using the AM1 Hamiltonian are also presented.

Figure Investigated betaine dye.


Betaine dye Correlation energy Torsional barrier Geometrical parameters 



This work was sponsored by the Polish Committee for Science Research (grant no T09A 350297), NSF EPSCOR grant no. 99-01-0072-08, CREST grant no. HRD-01-25484 and the AHPCRC under the agreement number DAAH04-95-2-00003, contract number DAAH04-95-C-0008, the contents of which do not necessarily reflect the position or policy of the government, and no official endorsement should be inferred. Calculations were carried out using resources at the Wroclaw (WCSS) and Mississippi Center for Supercomputing Research (MCSR). The authors would like to thank the Wroclaw University of Technology for support.


  1. 1.
    Reichardt C (1994) Chem Rev 94:2319–2356CrossRefGoogle Scholar
  2. 2.
    Reichardt C (1998) Solvents and solvents effects in orgainc chemistry. VCH, WeinheimGoogle Scholar
  3. 3.
    Bartkowiak W, Lipiński J (1998) J Phys Chem A 102:5236–5240CrossRefGoogle Scholar
  4. 4.
    Mente SR, Maroncelli M (1999) J Phys Chem B 103:7704–7718CrossRefGoogle Scholar
  5. 5.
    Ishida T, Rossky P (2001) J Phys Chem A 105:558–565CrossRefGoogle Scholar
  6. 6.
    Zaleśny R, Bartkowiak W, Styrcz S, Leszczynski J (2002) J Phys Chem A 106:4032–4037CrossRefGoogle Scholar
  7. 7.
    González D, Neilands O, Rezende MC (1999) J Chem Soc Perkin T 2:713–717Google Scholar
  8. 8.
    Morley JO, Padfield J (2002) J Chem Soc Perkin T 2:1698–1707Google Scholar
  9. 9.
    Lipiński J, Bartkowiak W (1999) Chem Phys 245:263–276CrossRefGoogle Scholar
  10. 10.
    Sworakowski J, Lipiński J, Ziólek L, Palewska K, Nešpúrek S (1996) J Phys Chem A 100:12288–12294CrossRefGoogle Scholar
  11. 11.
    Laxmikanth RJ, Bhanuprakash K (1998) J Mol Struct (THEOCHEM) 458:269–273CrossRefGoogle Scholar
  12. 12.
    Fabian J, Rosquete GA, Montero-Cabrera LA (1999) J Mol Struct (THEOCHEM) 469:163–176CrossRefGoogle Scholar
  13. 13.
    Hogiu S, Dreyer J, Pfeiffer M, Brzezinka KW, Wencke W (2000) J Ram Spect 31:797–803CrossRefGoogle Scholar
  14. 14.
    Jasien PG, Weber LL (2001) J Mol Struct (THEOCHEM) 572:203–212CrossRefGoogle Scholar
  15. 15.
    Head-Gordon M, Pople JA (1993) J Phys Chem 97:1147–1151CrossRefGoogle Scholar
  16. 16.
    Tsuzuki T, Uchimaru T, Matsumura K, Mikami M, Tanabe K (1999) J Chem Phys 110:2858–2861CrossRefGoogle Scholar
  17. 17.
    Arulmozhiraja S, Fujii T (2001) J Chem Phys 115:10589–10594CrossRefGoogle Scholar
  18. 18.
    Grein F (2003) J Mol Struct (THEOCHEM) 624:23–28CrossRefGoogle Scholar
  19. 19.
    Grein F (2003) Theor Chem Acc 109:274–277Google Scholar
  20. 20.
    Grein F (2002) J Phys Chem A 106:3823–3827CrossRefGoogle Scholar
  21. 21.
    Dewar JJS, Zoebish EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902CrossRefGoogle Scholar
  22. 22.
    Becke AD (1991) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  23. 23.
    Lee C, Yang W, Parr RG (1991) Phys Rev B 37:785–789CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A 11. Gaussian Inc, Pittsburgh PAGoogle Scholar
  25. 25.
    Lee JS, Park SY (2000) J Chem Phys 112:10746–10753CrossRefGoogle Scholar
  26. 26.
    Hernandes MZ, Longo R, Coutihno K, Canuto S (2004) Phys Chem Chem Phys 6:2088–2092CrossRefGoogle Scholar
  27. 27.
    Champagne B, Kirtman B (2001) Nonlinear optical materials. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices, vol 9. Academic, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Wawrzyniec Niewodniczański
    • 1
    • 2
  • Wojciech Bartkowiak
    • 1
    • 2
  • Jerzy Leszczynski
    • 2
  1. 1.Institute of Physical and Theoretical ChemistryWroclaw University of TechnologyWroclawPoland
  2. 2.Computational Center for Molecular Structure and Interactions, Department of ChemistryJackson State UniversityJacksonUSA

Personalised recommendations