Journal of Molecular Modeling

, Volume 11, Issue 4–5, pp 385–391 | Cite as

Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data

  • Slawomir FilipekEmail author
Original Paper


It has been shown that rhodopsin forms an oligomer in the shape of long double rows of monomers. Because of the importance of rhodopsin as a template for all G protein-coupled receptors, its dimeric, tetrameric and higher-oligomeric structures also provide a useful pattern for similar structures in GPCRs. New experimental data published recently are discussed in the context of a proposed model of the rhodopsin oligomer 1N3M deposited in the protein data bank. The new rhodopsin structure at 2.2 Å resolution with all residues resolved as well as an electron cryomicroscopy structure from 2D crystals of rhodopsin are in agreement with the 1N3M model. Accommodation of movement of transmembrane helix VI, regarded as a major event during the activation of rhodopsin, in a steady structure of the oligomer is also discussed.

Figure Superimposition of the 1U19 (red wire), 1GZM (purple wire) and 1N3M (blue wire) rhodopsin structures. Size of the wires is proportional to thermal factors of backbone Cα atoms, view parallel to the membrane.


GPCR Rhodopsin Membrane protein Oligomerization 



G protein-coupled receptor


Protein data bank


Transmembrane helix


Rod outer segment


Evolutionary trace



This study was supported by funds from Polish State Committee for Scientific Research grant 3P05F02625. Calculations were performed partly in ICM Computer Centre in Warsaw.


  1. 1.
    Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Biochemistry 42:2759–2767CrossRefPubMedGoogle Scholar
  2. 2.
    Ballesteros J, Palczewski K (2001) Curr Opin Drug Discov Dev 4:561–574Google Scholar
  3. 3.
    Bartfai T, Benovic JL, Bockaert J, Bond RA, Bouvier M, Christopoulos A, Civelli O, Devi LA, George SR, Inui A, Kobilka B, Leurs R, Neubig R, Pin JP, Quirion R, Roques BP, Sakmar TP, Seifert R, Stenkamp RE, Strange PG (2004) Nat Rev Drug Discov 3:574–626Google Scholar
  4. 4.
    Nestler EJ, Landsman D (2001) Nature 409:834–835CrossRefPubMedGoogle Scholar
  5. 5.
    Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) FEBS Lett 520:97–101CrossRefPubMedGoogle Scholar
  6. 6.
    Sautel M, Milligan G (2000) Curr Med Chem 7:889–896PubMedGoogle Scholar
  7. 7.
    Flower DR (1999) Biochim Biophys Acta Rev Biomembr 1422:207–234CrossRefGoogle Scholar
  8. 8.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745CrossRefPubMedGoogle Scholar
  9. 9.
    Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) Annu Rev Biophys Biomol Struct 32:375–397CrossRefPubMedGoogle Scholar
  10. 10.
    Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Trends Biochem Sci 28:479–487Google Scholar
  11. 11.
    Teller DC, Stenkamp RE, Palczewski K (2003) FEBS Lett 555:151–159CrossRefPubMedGoogle Scholar
  12. 12.
    Ballesteros JA, Shi L, Javitch JA (2001) Mol Pharmacol 60:1–19PubMedGoogle Scholar
  13. 13.
    Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Nature 421:127–128CrossRefPubMedGoogle Scholar
  14. 14.
    Angers S, Salahpour A, Bouvier M (2002) Annu Rev Pharmacol Toxicol 42:409–435CrossRefPubMedGoogle Scholar
  15. 15.
    Terrillon S, Bouvier M (2004) EMBO Rep 5:30–34CrossRefPubMedGoogle Scholar
  16. 16.
    Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278:21655–21662CrossRefPubMedGoogle Scholar
  17. 17.
    Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) FEBS Lett 564:281–288CrossRefPubMedGoogle Scholar
  18. 18.
    Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Biochemistry 40:7761–7772CrossRefPubMedGoogle Scholar
  19. 19.
    Giusto NM, Pasquare SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG (2000) Prog Lipid Res 39:315–391CrossRefPubMedGoogle Scholar
  20. 20.
    Saiz L, Klein ML (2001) Biophys J 81:204–216PubMedGoogle Scholar
  21. 21.
    Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312CrossRefGoogle Scholar
  22. 22.
    Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571–583CrossRefPubMedGoogle Scholar
  23. 23.
    Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) J Mol Biol 343:1409–1438CrossRefPubMedGoogle Scholar
  24. 24.
    Krebs A, Edwards PC, Villa C, Li JD, Schertler GFX (2003) J Biol Chem 278:50217–50225CrossRefPubMedGoogle Scholar
  25. 25.
    Brooijmans N, Sharp KA, Kuntz ID (2002) Proteins 48:645–653CrossRefPubMedGoogle Scholar
  26. 26.
    Shoichet BK, Kuntz ID (1996) Chem Biol 3:151–156CrossRefPubMedGoogle Scholar
  27. 27.
    Gabb HA, Jackson RM, Sternberg MJE (1997) J Mol Biol 272:106–120CrossRefPubMedGoogle Scholar
  28. 28.
    Jackson RM, Gabb HA, Sternberg MJE (1998) J Mol Biol 276:265–285CrossRefPubMedGoogle Scholar
  29. 29.
    Duhovny D, Nussinov R, Wolfson HJ (2002) Algorithms Bioinformatics Proc 2452:185–200Google Scholar
  30. 30.
    Exner TE, Keil M, Brickmann J (2002) J Comput Chem 23:1176–1187CrossRefPubMedGoogle Scholar
  31. 31.
    Exner TE, Keil M, Brickmann J (2002) J Comput Chem 23:1188–1197CrossRefPubMedGoogle Scholar
  32. 32.
    Lichtarge O, Bourne HR, Cohen FE (1996) J Mol Biol 257:342–358PubMedGoogle Scholar
  33. 33.
    Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O (2004) J Biol Chem 279:8126–8132CrossRefPubMedGoogle Scholar
  34. 34.
    Dean MK, Higgs C, Smith RE, Bywater RP, Snell CR, Scott PD, Upton GJG, Howe TJ, Reynolds CA (2001) J Med Chem 44:4595–4614CrossRefPubMedGoogle Scholar
  35. 35.
    Nemoto W, Toh H (2005) Proteins 58:644–660CrossRefPubMedGoogle Scholar
  36. 36.
    Guo W, Shi L, Javitch JA (2003) J Biol Chem 278:4385–4388CrossRefPubMedGoogle Scholar
  37. 37.
    Lee SP, O’Dowd BF, Rajaram RD, Nguyen T, George SR (2003) Biochemistry 42:11023–11031CrossRefPubMedGoogle Scholar
  38. 38.
    Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M (1996) J Biol Chem 271:16384–16392CrossRefPubMedGoogle Scholar
  39. 39.
    Zeng FY, Wess J (1999) J Biol Chem 274:19487–19497CrossRefPubMedGoogle Scholar
  40. 40.
    Vogel R, Ruprecht J, Villa C, Mielke T, Schertler GFX, Siebert F (2004) J Mol Biol 338:597–609CrossRefPubMedGoogle Scholar
  41. 41.
    Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) EMBO J 23:3609–3620CrossRefPubMedGoogle Scholar
  42. 42.
    Altenbach C, Klein-Seetharaman J, Cai KW, Khorana HG, Hubbell WL (2001) Biochemistry 40:15493–15500CrossRefPubMedGoogle Scholar
  43. 43.
    Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Adv Prot Chem 63:243–290Google Scholar
  44. 44.
    Filipek S, Krzysko KA, Fotiadis D, Liang Y, Saperstein DA, Engel A, Palczewski K (2004) Photochem Photobiol Sci 3:628–638Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.International Institute of Molecular and Cell BiologyWarsawPoland

Personalised recommendations