Journal of Molecular Modeling

, Volume 11, Issue 4–5, pp 317–322 | Cite as

Hydrogen-bond effects on the electronic absorption spectrum and evaluation of nonlinear optical properties of an aminobenzodifuranone derivative that exhibits the largest positive solvatochromism

  • Wojciech Bartkowiak
  • Paweł Lipkowski
Original Paper


In this work, for the first time, a theoretical approach to describing the influence of hydrogen-bond formation on the electronic absorption spectrum and nonlinear optical properties of an aminobenzodifuranone derivative (ABF) that exhibits the largest positive solvatochromic shift compared to other known chromophores is given. The solvent effect was included via the supermolecule (SM) method. The calculations were performed for a strong low-lying (π→π*) transition based on the configuration interaction singles (CIS) and time-dependent DFT (TDDFT) methods. The first-order hyperpolarizabilities (β) were computed using the finite-field (FF) technique combined with the Hartree–Fock (HF) theory. Reasonable agreement between theory and experiment was obtained for the solvatochromic shifts of the ABF molecule. Moreover, it was found that H-bond formation strongly influences the NLO response of the systems investigated.

Figure The interaction difference-density maps of the systems studied: a II - complex ABF with NFTB; b III - complex ABF with HMPA. The red color designates an increase of the electron density caused by the intermolecular interactions, whereas blue indicates a corresponding decrease of the electron density. The isodensity contours were plotted for ±0.01 electron/bohr3 (DFT/B3LYP/6-31G(d,p)).


Solvent effect Hydrogen bond Supermolecule Aminobenzodifuranone Hyperpolarizability 



This work was sponsored by the Polish Committee for Scientific Research (Grant No T09A 350297). The computation time in WCSS is gratefully acknowledged.


  1. 1.
    Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH, WeinheimGoogle Scholar
  2. 2.
    Reichardt C (1994) Chem Rev 94:2319–2358CrossRefGoogle Scholar
  3. 3.
    Li J, Cramer CJ, Truhlar DG (2000) Int J Quantum Chem 77:264–280CrossRefGoogle Scholar
  4. 4.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200PubMedGoogle Scholar
  5. 5.
    Suppan P (1990) J Photochem Photobiol A 50:293–330CrossRefGoogle Scholar
  6. 6.
    Amos AT, Burrows BL (1973) In: Advances in quantum chemistry. Academic Press, New York, pp289–313Google Scholar
  7. 7.
    Liptay N (1974) In: Excited states. New York, pp129–229Google Scholar
  8. 8.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  9. 9.
    Warshel A (1991) Computer modeling of chemical reactions in enzyme and solutions. Wiley, New YorkGoogle Scholar
  10. 10.
    Grozema FC, van Duijnen PT (1998) J Phys Chem A 102:7984–7989CrossRefGoogle Scholar
  11. 11.
    Gao J (1994) J Am Chem Soc 116:9324–9328CrossRefGoogle Scholar
  12. 12.
    Fox T, Rösch N (1992) Chem Phys Lett 191:33–37CrossRefGoogle Scholar
  13. 13.
    Kovalenko SA, Schanz R, Farztdinov VM, Henning H, Ernsting NP (2000) Chem Phys Lett 323:312–322CrossRefGoogle Scholar
  14. 14.
    Zyss J, Chemla DS (eds) (1987) Nonlinear properties of organic molecules and crystals. Academic Press, OrlandoGoogle Scholar
  15. 15.
    Keinan S, Ratner MA, Marks TJ (2004) Chem Mater 16:1848–1854Google Scholar
  16. 16.
    Maroulis G (2000) J Chem Phys 113:1813–1820CrossRefGoogle Scholar
  17. 17.
    Wang C-K, Wang Y-H, Su Y, Luo, Y (2003) J Chem Phys 119:4409–4412CrossRefGoogle Scholar
  18. 18.
    Wu K, Snijders JG, Lin C (2002) J Phys Chem B 106:8954–8958CrossRefGoogle Scholar
  19. 19.
    Mikkelsen KV, Luo Y, Ågren H, Jorgensen P (1995) J Phys Chem 102:9362–9367Google Scholar
  20. 20.
    Bartkowiak W, Zaleśny R, Kowal M, Leszczynski J (2002) Chem Phys Lett 362:224–228Google Scholar
  21. 21.
    Huyskens FL, Huyskens PL, Persoons AP (1998) J Chem Phys 108:8161–8171Google Scholar
  22. 22.
    Gorman AA, Hutchings MG, Wood PD (1996) J Am Chem Soc 118:8497–8498Google Scholar
  23. 23.
    Bartkowiak W (2000) Synth Met 109:108–111Google Scholar
  24. 24.
    Lee C, Yong W, Parr RG (1988) Phys Rev B 37:785–789Google Scholar
  25. 25.
    Becke AD (1992) J Chem Phys 98:1372–1377Google Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CTGoogle Scholar
  27. 27.
    Foresman JB, Head-Gordon M, Pople JA, Frish MJ (1992) J Phys Chem 96:149–135Google Scholar
  28. 28.
    Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464Google Scholar
  29. 29.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–224Google Scholar
  30. 30.
    Casida ME, Jamorski C, Casida RC, Salahub DR (1998) J Chem Phys 108:4439–4449Google Scholar
  31. 31.
    Cohen HD, Roothaan CC (1965) J Chem Phys 55:S43Google Scholar
  32. 32.
    Kurtz HA, Stewart JJP, Dieter KM (1990) J Comput Chem 11:82–87Google Scholar
  33. 33.
    Bishop DM, Norman P (2000) In: Handbook of advanced electronic and photonic materials and devices. Academic Press, San Diego, pp1–240Google Scholar
  34. 34.
    Champagne B, Kirtman B (2000) In: Handbook of advanced electronic and photonic materials and devices. Academic Press, San Diego, pp63–126Google Scholar
  35. 35.
    Gora RW (2001–2003) DENDIF v2.1.1 package, Wroclaw, Poland, Jackson, MS, USAGoogle Scholar
  36. 36.
    Schaftenaar G, Noordik JH (2000) J Comput-Aided Mol Design 14:123–134Google Scholar
  37. 37.
    Jasien PG, Weber LL (2001) J Mol Struct (Theochem) 572:203–212CrossRefGoogle Scholar
  38. 38.
    Abe J, Shirai Y (1996) J Am Chem Soc 118:4705–4706Google Scholar
  39. 39.
    Sałek P, Vahtras O, Helgaker T, Ågren H (2002) J Chem Phys 117:9630–9645Google Scholar
  40. 40.
    Masunov A, Tretiak S (2004) J Phys Chem B 108:899–907Google Scholar
  41. 41.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryWrocław University of TechnologyWrocławPoland

Personalised recommendations