Journal of Molecular Modeling

, Volume 11, Issue 6, pp 457–467 | Cite as

Hierarchic system of QSAR models (1D–4D) on the base of simplex representation of molecular structure

  • Victor E. Kuz’min
  • Anatoly G. Artemenko
  • Pavel G. Polischuk
  • Eugene N. Muratov
  • Alexander I. Hromov
  • Anatoly V. Liahovskiy
  • Sergey A. Andronati
  • Svetlana Yu. Makan
Original Paper

Abstract

In this work, a hierarchic system of QSAR models from 1D to 4D is considered on the basis of the simplex representation of molecular structure (SiRMS). The essence of this system is that the QSAR problem is solved sequentially in a series of the improved models of the description of molecular structure. Thus, at each subsequent stage of a hierarchic system, the QSAR problem is not solved ab ovo, but rather the information obtained from the previous step is used. Actually, we deal with a system of solutions defined more exactly. In the SiRMS approach, a molecule is represented as a system of different simplex descriptors (tetratomic fragments with fixed composition, structure, chirality and symmetry). The level of simplex-descriptor detail increases consecutively from 1D to 4D representations of molecular structure. It enables us to determine the fragments of structure that promote or interfere with the given biological activity easily. Molecular design of compounds with a given level of activity is possible on the basis of SiRMS. The efficiency of the method is demonstrated for the example of the analysis of substituted piperazines affinity for the 5-HT1A receptor.

Figure Hierarchical technology of solving QSAR and Drug Design tasks.

Keywords

1D–4D QSAR Simplex descriptors Molecular design Hierarchic system  5-HT1A agonists 

Notes

Acknowledgments

This study was partially supported by INTAS (INTAS Grant 97-31528).

References

  1. 1.
    Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967CrossRefGoogle Scholar
  2. 2.
    Seel M, Turner DB, Wilett P (1999) QSAR 18:245–252Google Scholar
  3. 3.
    Doweyko AM (1988) J Math Chem 31:1396–1406Google Scholar
  4. 4.
    Kuz’min VE, Artemenko AG, Kovdienko NA, Tetko IV, Livingstone DJ (2000) J Mol Model 6:517–526CrossRefGoogle Scholar
  5. 5.
    Vedani A, Dobler M (2000) Prog Drug Res 55:107–135Google Scholar
  6. 6.
    Suchachev DV, Pivina TS, Shliapochnikov VA, Petrov EA, Paliulin VA, Zefirov NS (1993) Dokl RAN (in Russian) 328:50–57Google Scholar
  7. 7.
    Kuz’min VE (1994) Zh Phys Khim (in Russian) 68:1037–1043Google Scholar
  8. 8.
    Kuz’min VE (1995) Zh Strucur Khim (in Russian) 36:871–878Google Scholar
  9. 9.
    Kuz’min VE, Chelombitko VA, Yudanova IV (1998) Zh Structur Khim (in Russian) 39:549–554Google Scholar
  10. 10.
    Kuz’min VE, Artemenko AG, Lozitsky VP, Muratov EN, Fedtchouk AS, Dyachenko NS, Nosach LN, Gridina TL, Shitikova LI, Mudrik LM, Chelombitko VA, Zheltvay AI, Vanden Eynde JJ (2002) Acta Biochim Pol 49:157–168PubMedGoogle Scholar
  11. 11.
    Basak SC, Gute BD, Grunwald GD (1997) J Chem Inf Comput Sci 37:651–655CrossRefGoogle Scholar
  12. 12.
    Jolly WL, Perry WB (1973) J Am Chem Soc 95:5442–5450CrossRefGoogle Scholar
  13. 13.
    Renxiao W, Ying Fu, Luhua L (1997) J Chem Inf Comput Sci 37:615–621CrossRefGoogle Scholar
  14. 14.
    Burkert U, Allinger NI (1982) Molecular mechanics. ACS, Washington DCGoogle Scholar
  15. 15.
    Rännar S, Lindgren F, Geladi P, Wold S (1994) J Chemometrics 8:111–125CrossRefGoogle Scholar
  16. 16.
    Ferster E, Renz B (1979) Methoden der Korrelations und Regressionanalyse. Verlag Die Wirtschaft, BerlinGoogle Scholar
  17. 17.
    Schwefel HP (1981) Numerical optimization of computer models. Chichester, WileyGoogle Scholar
  18. 18.
    Carhart RE, Smith DH, Venkataraghavan R (1985) J Chem Inf Comput Sci 25:64–73CrossRefGoogle Scholar
  19. 19.
    Hyperchem 7.5 software (2003) Hypercube Inc, 1115 NW 4th Street, Gainesville, FL 32601 USA. Trial version from http://www.hyper.com
  20. 20.
    Milano Chemometrics & QSAR Research Group (2001) DRAGON Web version from http://www.disat.unimib.it/chm
  21. 21.
    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. In: Mannhold R, Kubinyi H, Timmerman H (eds) Methods and principles in medicinal chemistry, vol 11. Wiley-VCHGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Victor E. Kuz’min
    • 1
  • Anatoly G. Artemenko
    • 1
  • Pavel G. Polischuk
    • 1
  • Eugene N. Muratov
    • 1
  • Alexander I. Hromov
    • 1
  • Anatoly V. Liahovskiy
    • 1
  • Sergey A. Andronati
    • 1
  • Svetlana Yu. Makan
    • 1
  1. 1.A.V. Bogatsky Physico-Chemical Institute of the National Academy of SciencesOdessaUkraine

Personalised recommendations