Skip to main content
Log in

A QCAR-approach to materials modeling

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Little is known about the relationship between the function and structure of materials. Materials (solids with a function) are complex entities and a better knowledge of the parameters that contribute to function is desirable. Here, we present modeling approaches that correlate chemical composition with function of heterogeneous catalysts. The complete composition space of the mixed oxides of Ni–Cr–Mn and of Ni–Co–Mo–Mn (10% spacing) have been measured for the oxidation of propene to acroleine. The data have been collected, visualized and modeled. Different mathematical approaches such as Support Vector Machines, multilevel B-splines approximation and Kriging have been applied to model this relationship. High-throughput screening data of ternary and quaternary composition spreads are approximated to locate catalysts of high activity within the search space. For quaternary systems, slice plots offer a good tool for visualization of the results. Using these approximation techniques, the composition of the most active catalysts can be predicted. The study documents that distinct relationships between chemical composition and catalytic function exist and can be described by mathematical models.

Visualization of a ternary catalyst system and its approximation using slice plots

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Potyrailo RA, Takeuchi I (2005) Meas Sci & Technol 16:1–4

    Article  CAS  Google Scholar 

  2. Potyrailo RA, Amis EJ (2003) High-throughput analysis: a tool for combinatorial materials science, 1st edn. Kluwer, New York

    Google Scholar 

  3. Takeuchi I, Xiang XD (2003) Combinatorial materials synthesis, 1st edn. Marcel Dekker Inc, New York Basel

    Google Scholar 

  4. Maier WF (2003) Appl Catal A: General 254:1–2

    Article  CAS  Google Scholar 

  5. Koinuma H, Xiang XD, Kawasaki M, Chikyow T (2002) Combinatorial materials science and technology. Elsevier Science B.V.

  6. Cawse JN (2003) Experimental design for combinatorial and high throughput materials development. Wiley, Hoboken

    Google Scholar 

  7. Klanner C, Farrusseng D, Baumes L, Lengliz M, Mirodatos C, Schüth F (2004) Angew Chem 116:5461–5463

    Article  Google Scholar 

  8. Farrusseng D, Klanner C, Baumes L, Lengliz M, Mirodatos C, Schüth F (2005) QSAR & Comb Sci 24:78–93

    Article  CAS  Google Scholar 

  9. Scheidtmann J, Klär D, Saalfrank JW, Schmidt T, Maier WF (2005) QSAR & Comb Sci 2:203–210

    Article  Google Scholar 

  10. Scheidtmann J, Saalfrank JW, Maier WF (2003) Plattenbau - automated synthesis of catalysts and materials libraries. In: Anpo M, Onaka M, Yamashita H (eds) Studies in surface science and catalysis, 145. Elsevier, Tokyo, pp 13–21

    Google Scholar 

  11. Weiss PA, Saalfrank JW, Scheidtmann J, Schmidt HW, Maier WF (2003) In: Potyrailo RA, Amis EJ (eds) High-throughput analysis: a tool for combinatorial materials science, 1st edn. Kluwer, New York, pp 125–153

    Google Scholar 

  12. Vapnik VN (1995) The nature of statistical learning theory, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis, 1st edn. Cambridge University Press

  14. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, 1st edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Stutz B (2004) Suchstrategien für Optimale Katalysatoren in der Kombinatorischen Chemie. Diplomarbeit, Universität des Saarlandes

  16. Franke R, Nielson GM (1991) Scattered data interpolation and applications: a tutorial and survey In: Hagen H, Roller D (eds) Geometric modelling: methods and their application, Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Franke R (1982) Math Comp 38:181–200

    Article  Google Scholar 

  18. Lee S, Wolberg G, Shin SY (1997) IEEE Transactions on Visualization and Computer Graphics 3:228–244

    Article  Google Scholar 

  19. Cressie N (1993) Statistics for spatial data, revised edn. Wiley, New York

    Google Scholar 

  20. Rivoirard J (1994) Introduction to disjunctive kriging and nonlinear geostatistics. Oxford University Press, Oxford

    Google Scholar 

  21. Chilès JP, Delfiner P (1990) Geostatistics—modelling spatial uncertainty. Wiley, New York, p 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm F. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieg, S., Stutz, B., Schmidt, T. et al. A QCAR-approach to materials modeling. J Mol Model 12, 611–619 (2006). https://doi.org/10.1007/s00894-005-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0068-9

Keywords

Navigation