Advertisement

Journal of Molecular Modeling

, Volume 12, Issue 5, pp 611–619 | Cite as

A QCAR-approach to materials modeling

  • Simone Sieg
  • Bernhard Stutz
  • Timm Schmidt
  • Fred Hamprecht
  • Wilhelm F. MaierEmail author
Original Paper

Abstract

Little is known about the relationship between the function and structure of materials. Materials (solids with a function) are complex entities and a better knowledge of the parameters that contribute to function is desirable. Here, we present modeling approaches that correlate chemical composition with function of heterogeneous catalysts. The complete composition space of the mixed oxides of Ni–Cr–Mn and of Ni–Co–Mo–Mn (10% spacing) have been measured for the oxidation of propene to acroleine. The data have been collected, visualized and modeled. Different mathematical approaches such as Support Vector Machines, multilevel B-splines approximation and Kriging have been applied to model this relationship. High-throughput screening data of ternary and quaternary composition spreads are approximated to locate catalysts of high activity within the search space. For quaternary systems, slice plots offer a good tool for visualization of the results. Using these approximation techniques, the composition of the most active catalysts can be predicted. The study documents that distinct relationships between chemical composition and catalytic function exist and can be described by mathematical models.

Visualization of a ternary catalyst system and its approximation using slice plots

Keywords

Selective oxidation Acroleine materials modeling Kriging Heterogeneous catalysts Composition–activity relationship QCAR 

References

  1. 1.
    Potyrailo RA, Takeuchi I (2005) Meas Sci & Technol 16:1–4CrossRefGoogle Scholar
  2. 2.
    Potyrailo RA, Amis EJ (2003) High-throughput analysis: a tool for combinatorial materials science, 1st edn. Kluwer, New YorkGoogle Scholar
  3. 3.
    Takeuchi I, Xiang XD (2003) Combinatorial materials synthesis, 1st edn. Marcel Dekker Inc, New York BaselGoogle Scholar
  4. 4.
    Maier WF (2003) Appl Catal A: General 254:1–2CrossRefGoogle Scholar
  5. 5.
    Koinuma H, Xiang XD, Kawasaki M, Chikyow T (2002) Combinatorial materials science and technology. Elsevier Science B.V.Google Scholar
  6. 6.
    Cawse JN (2003) Experimental design for combinatorial and high throughput materials development. Wiley, HobokenGoogle Scholar
  7. 7.
    Klanner C, Farrusseng D, Baumes L, Lengliz M, Mirodatos C, Schüth F (2004) Angew Chem 116:5461–5463CrossRefGoogle Scholar
  8. 8.
    Farrusseng D, Klanner C, Baumes L, Lengliz M, Mirodatos C, Schüth F (2005) QSAR & Comb Sci 24:78–93CrossRefGoogle Scholar
  9. 9.
    Scheidtmann J, Klär D, Saalfrank JW, Schmidt T, Maier WF (2005) QSAR & Comb Sci 2:203–210CrossRefGoogle Scholar
  10. 10.
    Scheidtmann J, Saalfrank JW, Maier WF (2003) Plattenbau - automated synthesis of catalysts and materials libraries. In: Anpo M, Onaka M, Yamashita H (eds) Studies in surface science and catalysis, 145. Elsevier, Tokyo, pp 13–21Google Scholar
  11. 11.
    Weiss PA, Saalfrank JW, Scheidtmann J, Schmidt HW, Maier WF (2003) In: Potyrailo RA, Amis EJ (eds) High-throughput analysis: a tool for combinatorial materials science, 1st edn. Kluwer, New York, pp 125–153Google Scholar
  12. 12.
    Vapnik VN (1995) The nature of statistical learning theory, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis, 1st edn. Cambridge University PressGoogle Scholar
  14. 14.
    Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, 1st edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. 15.
    Stutz B (2004) Suchstrategien für Optimale Katalysatoren in der Kombinatorischen Chemie. Diplomarbeit, Universität des SaarlandesGoogle Scholar
  16. 16.
    Franke R, Nielson GM (1991) Scattered data interpolation and applications: a tutorial and survey In: Hagen H, Roller D (eds) Geometric modelling: methods and their application, Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    Franke R (1982) Math Comp 38:181–200CrossRefGoogle Scholar
  18. 18.
    Lee S, Wolberg G, Shin SY (1997) IEEE Transactions on Visualization and Computer Graphics 3:228–244CrossRefGoogle Scholar
  19. 19.
    Cressie N (1993) Statistics for spatial data, revised edn. Wiley, New YorkGoogle Scholar
  20. 20.
    Rivoirard J (1994) Introduction to disjunctive kriging and nonlinear geostatistics. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Chilès JP, Delfiner P (1990) Geostatistics—modelling spatial uncertainty. Wiley, New York, p 1999Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Simone Sieg
    • 1
  • Bernhard Stutz
    • 1
  • Timm Schmidt
    • 1
  • Fred Hamprecht
    • 2
  • Wilhelm F. Maier
    • 1
    Email author
  1. 1.Lehrstuhl für Technische ChemieUniversität des SaarlandesSaarbrückenGermany
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany

Personalised recommendations