Advertisement

Journal of Molecular Modeling

, Volume 12, Issue 6, pp 813–822 | Cite as

Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding

  • Holger ScheibEmail author
  • Iain McLay
  • Nicolas Guex
  • Jeff J. Clare
  • Frank E. Blaney
  • Tim J. Dale
  • Simon N. Tate
  • Graeme M. Robertson
Original Paper

Abstract

In this work molecular modeling was applied to generate homology models of the pore region of the Na v 1.2 and Na v 1.8 isoforms of human voltage-gated sodium channels. The models represent the channels in the resting, open, and fast-inactivated states. The transmembrane portions of the channels were based on the equivalent domains of the closed and open conformation potassium channels KcsA and MthK, respectively. The critical selectivity loops were modeled using a structural template identified by a novel 3D-search technique and subsequently merged with the transmembrane portions. The resulting draft models were used to study the differences of tetrodotoxin binding to the tetrodotoxin-sensitive Na v 1.2 (EC50: 0.012 μM) and -insensitive Na v 1.8 (EC50: 60 μM) isoforms, respectively. Furthermore, we investigated binding of the local anesthetic tetracaine to Na v 1.8 (EC50: 12.5 μM) in resting, conducting, and fast-inactivated state. In accordance with experimental mutagenesis studies, computational docking of tetrodotoxin and tetracaine provided (1) a description of site 1 toxin and local anesthetic binding sites in voltage-gated sodium channels. (2) A rationale for site 1 toxin-sensitivity versus -insensitivity in atomic detail involving interactions of the Na v 1.2 residues F385-I and W943-II. (3) A working hypothesis of interactions between Na v 1.8 in different conformational states and the local anesthetic tetracaine.

Figure

Tetracaine in complex with Nav1.8 in fast-inactivated form. The ligand is represented in CPK and colored by atom type. Ribbons and amino acids are colored by domain: yellow = domain I, blue = domain II, green = domain III, red = domain IV, pink = inactivation gate. Main interaction partners are shown in CPK. a) Tetracaine bound to the inner vestibule. View along the membrane plane. b) Same view as in a but limited to main interaction partners only. The polar head group of tetracaine interacts with the DEKA-motif residues, its hydrophobic tail with the hydrophobic and mainly aromatic residues of S6-IV and the inactivation gate

Keywords

Voltage-gated sodium channels Tetrodotoxin Tetracaine Protein structure modeling Computational docking 

Notes

Acknowledgements

HS thanks the Swiss Institute of Bioinformatics for support of this work. He also thanks GlaxoSmithKline for generous travel grants and a modified version of SPDBV.

Supplementary material

894_2005_66_MOESM1_ESM.pdf (20 kb)
Chemical structures of tetrodotoxin and tetracaine (PDF 20 kb)
894_2005_66_MOESM1_ESM.pdf (20 kb)
Residue names and numbers of amino acids forming the local anesthetic binding site in Nav1.2 and Nav1.8 (PDF 48kb)

References

  1. 1.
    Catterall WA (2000) Neuron 26:13–25CrossRefGoogle Scholar
  2. 2.
    Hille B (2001) Ion channels of excitable membranes. Sinauer Associates Inc, Sunderland, MA USAGoogle Scholar
  3. 3.
    Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) Nature 409:1047–1051CrossRefGoogle Scholar
  4. 4.
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Science 265:1724–1728CrossRefGoogle Scholar
  5. 5.
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Proc Natl Acad Sci USA 93:9270–9275CrossRefGoogle Scholar
  6. 6.
    Linford NJ, Cantrell AR, Qu Y, Scheuer T, Catterall WA (1998) Proc Natl Acad Sci USA 95:13947–13952CrossRefGoogle Scholar
  7. 7.
    Wang GK, Quan C, Wang S (1998) Pflugers Arch 435:293–302CrossRefGoogle Scholar
  8. 8.
    Wright SN, Wang SY, Wang GK (1998) Mol Pharmacol 54:733–739Google Scholar
  9. 9.
    Nau C, Wang SY, Strichartz GR, Wang GK (1999) Mol Pharmacol 56:404–413Google Scholar
  10. 10.
    Sunami A, Glaaser IW, Fozzard HA (2000) Proc Natl Acad Sci USA 97:2326–2331CrossRefGoogle Scholar
  11. 11.
    Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA (2001) J Biol Chem 276:20–27CrossRefGoogle Scholar
  12. 12.
    Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA (2002) J Biol Chem 277:35393–35401CrossRefGoogle Scholar
  13. 13.
    Vassilev PM, Scheuer T, Catterall WA (1988) Science 241:1658–1661CrossRefGoogle Scholar
  14. 14.
    Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Nature 339:597–603CrossRefGoogle Scholar
  15. 15.
    Patton DE, West JW, Catterall WA, Goldin AL (1992) Proc Natl Acad Sci USA 89:10905–10909CrossRefGoogle Scholar
  16. 16.
    West JW, Patton DE, Scheuer T, Wang Y, Goldin AL Catterall WA (1992) Proc Natl Acad Sci USA 89:10910–10914CrossRefGoogle Scholar
  17. 17.
    Penzotti JL, Fozzard HA, Lipkind GM, Dudley Jr SC (1998) Biophys J 75:2647–2657Google Scholar
  18. 18.
    Lipkind GM, Fozzard HA (1994) Biophys J 66:1–13Google Scholar
  19. 19.
    Guy HR, Durell SR (1996) Developing three-dimensional models of ion channel proteins. In: Narahashi T (ed) Ion Channels, vol 4. Plenum, New York, London, pp 1–40Google Scholar
  20. 20.
    Guy HR, Durell SR (1995) Structural model of Na+, Ca2+, and K+ channels. In: Dawson D (ed) Ion channels and genetic diseases. The Rockefeller University Press, New York, pp 1–16Google Scholar
  21. 21.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Nature 417:515–522CrossRefGoogle Scholar
  22. 22.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Nature 417:523–526CrossRefGoogle Scholar
  23. 23.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) Science 280:69–77CrossRefGoogle Scholar
  24. 24.
    Lipkind GM, Fozzard HA (2000) Biochemistry 39:8161–8170CrossRefGoogle Scholar
  25. 25.
    Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA (2002) J Physiol 543:71–84CrossRefGoogle Scholar
  26. 26.
    Tikhonov DB, Zhorov BS (2005) Biophys J 88:184–197CrossRefGoogle Scholar
  27. 27.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  28. 28.
    Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B, Polikarpov I (1998) Structure 6:1047–1055CrossRefGoogle Scholar
  29. 29.
    van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular Simulation: The GROMOS 96 Manual and User Guide. vdf Hochschulverlag AG an der ETH Zürich, ZürichGoogle Scholar
  30. 30.
    Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999) Biochemistry 38:855–861CrossRefGoogle Scholar
  31. 31.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291CrossRefGoogle Scholar
  32. 32.
    McMartin C, Bohacek RS (1997) J Comput Aided Mol Des 11:333–344CrossRefGoogle Scholar
  33. 33.
    Fozzard HA, Lipkind G (1996) Jpn Heart J 37:683–692Google Scholar
  34. 34.
    Hille B (1971) J Gen Physiol 58:599–619CrossRefGoogle Scholar
  35. 35.
    Hille B (1975) Biophys J 15:615–619Google Scholar
  36. 36.
    Guo XT, Uehara A, Ravindran A, Bryant SH, Hall S, Moczydlowski E (1987) Biochemistry 26:7546–7556CrossRefGoogle Scholar
  37. 37.
    Noda M, Suzuki H, Numa S, Stuhmer W (1989) FEBS Lett 259:213–216CrossRefGoogle Scholar
  38. 38.
    Ravindran A, Moczydlowski E (1989) Biophys J 55:359–365Google Scholar
  39. 39.
    Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) FEBS Lett 293:93–96CrossRefGoogle Scholar
  40. 40.
    Doyle DD, Guo Y, Lustig SL, Satin J, Rogart RB, Fozzard HA (1993) J Gen Physiol 101:153–182CrossRefGoogle Scholar
  41. 41.
    Elliott AA, Elliott JR (1993) J Physiol 463:39–56Google Scholar
  42. 42.
    Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459–9464CrossRefGoogle Scholar
  43. 43.
    Hille B (1977) J Gen Physiol 69:497–515CrossRefGoogle Scholar
  44. 44.
    Vedantham V, Cannon SC (1999) J Gen Physiol 113:7–16CrossRefGoogle Scholar
  45. 45.
    Scheuer T (1999) J Gen Physiol 113:3–6CrossRefGoogle Scholar
  46. 46.
    Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986) Nature 320:188–192CrossRefGoogle Scholar
  47. 47.
    Akopian AN, Sivilotti L, Wood JN (1996) Nature 379:257–262CrossRefGoogle Scholar
  48. 48.
    Choudhary G, Yotsu-Yamashita M, Shang L, Yasumoto T, Dudley Jr SC (2003) Biophys J 84:287–294CrossRefGoogle Scholar
  49. 49.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. Harper Collins, New YorkGoogle Scholar
  50. 50.
    Allen TW, Andersen OS, Roux B (2004) Proc Natl Acad Sci USA 101:117–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Holger Scheib
    • 1
    • 2
    • 3
    Email author
  • Iain McLay
    • 4
  • Nicolas Guex
    • 5
  • Jeff J. Clare
    • 4
  • Frank E. Blaney
    • 6
  • Tim J. Dale
    • 4
  • Simon N. Tate
    • 4
  • Graeme M. Robertson
    • 7
  1. 1.SBC Lab AGWinkelSwitzerland
  2. 2.Department of Structural Biology and BioinformaticsUniversity of GenevaGeneva 4Switzerland
  3. 3.Swiss Institute of BioinformaticsCentre Médicale UniversitaireGeneva 4Switzerland
  4. 4.GlaxoSmithKline Medicines Research CentreStevenageUK
  5. 5.GlaxoSmithKlineResearch Triangle ParkUSA
  6. 6.GlaxoSmithKline New Frontiers Science Park (North)HarlowUK
  7. 7.sienabiotech SpASienaItaly

Personalised recommendations