Advertisement

Journal of Molecular Modeling

, Volume 12, Issue 4, pp 422–431 | Cite as

The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors

  • Alfonso T. García-Sosa
  • Ricardo L. Mancera
Original paper

Abstract

We have determined the effects that tightly bound water molecules have on the de novo design of cyclin-dependent kinase-2 (CDK2) ligands. In particular, we have analyzed the impact of a specific structural water molecule on the chemical diversity and binding mode of ligands generated through a de novo structure-based ligand generation method in the binding site of CDK2. The tightly bound water molecule modifies the size and shape of the binding site and we have found that it also imposed constraints on the observed binding modes of the generated ligands. This in turn had the indirect effect of reducing the chemical diversity of the underlying molecular scaffolds that were able to bind to the enzyme satisfactorily.

Keywords

Hydration Solvation Structure-based drug design CDK2 

Notes

Acknowledgements

ATGS is grateful to Consejo Nacional de Ciencia y Tecnología (CoNaCyT, México) for the award of a post-graduate scholarship and to the Universities UK for an Overseas Research Scheme award. The authors would like to thank Dr. Nikolay P. Todorov, Dr. Stuart Firth-Clark and Dr. Christoph Buenemann for helpful and fruitful discussions.

References

  1. 1.
    Davis AM, Teague SJ, Kleywegt GJ (2003) Angew Chem Int Ed 42:2718-2736CrossRefGoogle Scholar
  2. 2.
    Poornima CS, Dean PM (1995) J Comput-Aided Mol Des 9:500–512CrossRefPubMedGoogle Scholar
  3. 3.
    Hendlich M, Bergner A, Günter J, Klebe G (2003) J Mol Biol 326:607–620CrossRefPubMedGoogle Scholar
  4. 4.
    Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE (1998) Struct Fold Des 6:1141–1151CrossRefGoogle Scholar
  5. 5.
    Rejto PA, Verkhivker GM (1997) Proteins Struct Funct Genet 28:313–324CrossRefPubMedGoogle Scholar
  6. 6.
    Wester MR, Johnson EF, Marques-Soares C, Dijols S, Dansette PM, Mansuy D, Stout CD (2003) Biochem 42:9335–9345CrossRefGoogle Scholar
  7. 7.
    Marrone TJ, Briggs JM, McCammon JA (1997) Ann Rev Pharmacol Toxicol 37:71–90CrossRefGoogle Scholar
  8. 8.
    Lam PYS, Jadhav PK, Eyermann CJ, Hodge CN, Ru Y, Bacheler LT, Meek JL, Otto MJ, Rayner MM, Wong YN, Chang CH, Weber PC, Jackson DA, Sharpe TR, Ericksonviitanen S (1994) Science 263:380–384PubMedCrossRefGoogle Scholar
  9. 9.
    Chen JM, Xu SL, Wawrzak Z, Basarab GS, Jordan DB (1998) Biochem 37:17735–17744CrossRefGoogle Scholar
  10. 10.
    Mikol V, Papageorgiou C, Borer X (1995) J Med Chem 38:3361–3367CrossRefPubMedGoogle Scholar
  11. 11.
    Cherbavaz DB, Lee ME, Stroud RM, Koschl DE (2000) J Mol Biol 295:377–385CrossRefPubMedGoogle Scholar
  12. 12.
    Finley JB, Atigadda VR, Duarte F, Zhao JJ, Brouillette WJ, Air GM, Luo M (1999) J Mol Biol 293:1107–1119CrossRefPubMedGoogle Scholar
  13. 13.
    Rarey M, Kramer B, Lengauer T (1998) Proteins Struct Funct Genet 34:17–28CrossRefGoogle Scholar
  14. 14.
    Schnecke V, Kuhn LA (2000) Perspect Drug Discov Des 20:171–190CrossRefGoogle Scholar
  15. 15.
    Pospisil P, Kuoni T, Scapozza L, Folkers G (2002) J Recept Signal Transduct Res 22:141–154CrossRefPubMedGoogle Scholar
  16. 16.
    Pastor M, Cruciani G, Watson KA (1997) J Med Chem 40:4089–4102CrossRefPubMedGoogle Scholar
  17. 17.
    Lloyd DG, García-Sosa AT, Alberts IL, Todorov NP, Mancera RL (2004) J Comput-Aided Mol Des 18:89–100CrossRefPubMedGoogle Scholar
  18. 18.
    Mancera RL (2002) J Comput-Aided Mol Des 16:479–499CrossRefPubMedGoogle Scholar
  19. 19.
    Todorov NP, Dean PM (1998) J Comput-Aided Mol Des 12:335–349CrossRefPubMedGoogle Scholar
  20. 20.
    Stahl M, Todorov NP, James T, Mauser H, Boehm H-J, Dean PM (2002) J Comput-Aided Mol Des 16:459–478CrossRefPubMedGoogle Scholar
  21. 21.
    Gray NS, Wodicka L, Thunissen A-MWH, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L, Kim S-H, Lockhart DJ, Schultz PG (1998) Science 281:533–538CrossRefPubMedMathSciNetGoogle Scholar
  22. 22.
    Knockaert M, Greengard P, Meijer L (2002) Trends Phamacol Sci 23:417–425CrossRefGoogle Scholar
  23. 23.
    Metz WA (2003) Bioorg Med Chem Lett 13:2953–2953CrossRefGoogle Scholar
  24. 24.
    Beattie JF, Breault GA, Ellston RPA, Green S, Jewsbury PJ, Midgley CJ, Naven RT, Minshull CA, Pauptit RA, Tucker JA, Pease JE (2003) Bioorg Med Chem Lett 13:2955–2960CrossRefPubMedGoogle Scholar
  25. 25.
    Breault GA, Ellston RPA, Green S, James SR, Jewsbury PJ, Midgley CJ, Pauptit RA, Minshull CA, Tucker JA, Pease JA (2003) Bioorg Med Chem Lett 13:2961–2966CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson M, Beattie JF, Breault GA, Breed J, Blyth KF, Culshaw JD, Ellston RPA, Green S, Minshull CA, Norman RA, Pauptit RA, Stanway J, Thomas AP, Jewsbury PJ (2003) Bioorg Med Chem Lett 13:3021–3026CrossRefPubMedGoogle Scholar
  27. 27.
    Westwell AD (2003) Drug Discov Today 8:1094–1095CrossRefGoogle Scholar
  28. 28.
    McGovern SL, Shoichet BK (2003) J Med Chem 46:1478–1483CrossRefPubMedGoogle Scholar
  29. 29.
    Sayle KL, Bentley J, Boyle FT, Calvert AH, Cheng YZ, Curtin NJ, Endicott JA, Golding BT, Hardcastle IR, Jewsbury PJ, Mesguiche V, Newell DR, Noble MEM, Parsons RJ, Pratt DJ, Wang LZ, Griffin RJ (2003) Bioorg Med Chem Lett 13:3079–3082CrossRefPubMedGoogle Scholar
  30. 30.
    Moravec J, Krystof V, Hanus J, Havlicek L, Moravcova D, Fuksova K, Kuzma M, Lenobel R, Otyepka M, Strnad M (2003) Bioorg Med Chem Lett 13:2993–2996CrossRefPubMedGoogle Scholar
  31. 31.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242CrossRefPubMedGoogle Scholar
  32. 32.
    Shewchuk L, Hassell A, Wisely B, Rocque W, Holmes W, Veal J, Kuyper LF (2000) J Med Chem 43:133–138CrossRefPubMedGoogle Scholar
  33. 33.
    Pierce AC, Sandretto KL, Bemis GW (2002) Proteins Struct Funct Genet 49:567–576CrossRefPubMedGoogle Scholar
  34. 34.
    Todorov NP, Dean PM (1997) J Comput-Aided Mol Des 11:175–192CrossRefPubMedGoogle Scholar
  35. 35.
    Dinur U, Hagler AT (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, vol 2. VCH Publishers Inc, USAGoogle Scholar
  36. 36.
    García-Sosa AT, Mancera RL, Dean PM (2003) J Mol Model 9:172–182CrossRefGoogle Scholar
  37. 37.
    Kríz Z, Otyepka M, Bártová I, Koca J (2004) Proteins Struct Funct Bioinf 55:258–274CrossRefGoogle Scholar
  38. 38.
    Krystof V, Strnad M (2001) Chem Listy 95:295–300Google Scholar
  39. 39.
    Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble MEM (2002) Pharmacol Therap 93:125–133CrossRefGoogle Scholar
  40. 40.
    Hardcastle IR, Golding BT, Griffin RJ (2002) Annu Rev Pharmacol Toxicol 42:325–348CrossRefPubMedGoogle Scholar
  41. 41.
    Gibson AE, Arris CE, Bentley J, Boyle T, Curtin NJ, Davies TG, Endicott JA, Golding BT, Grant S, Griffin RJ, Jewsbury P, Johnson LN, Mesguiche V, Newell DR, Noble MEM, Tucker JA, Whitfield HJ (2002) J Med Chem 45:3381–3393CrossRefPubMedGoogle Scholar
  42. 42.
    Schulze-Gahmen U, De Bondt HL, Kim S-H (1996) J Med Chem 39:4540–4546CrossRefPubMedGoogle Scholar
  43. 43.
    Misra RN, Xiao H, Kim KS, Han W-C, Barbosa SA, Hunt JT, Rawlins DB, Shan W, Ahmed SZ, Qian L, Chen B-C, Zhao R, Bednarz MS, Kellar KA, Mulheron JG, Batorsky R, Roongta U, Kamath A, Marathe P, Ranadive SA, Sack JS, Tokarski JS, Pavletich NP, Lee FYF, Webster KR, Kimball SD (2004) J Med Chem 47:1719–1728CrossRefPubMedGoogle Scholar
  44. 44.
    de Azevedo WF, Mueller-Dieckman H-J, Schulze-Gahmen U, Worland PJ, Sausville EA, Kim SH (1996) Proc Natl Acad Sci USA 93:2735–2740CrossRefPubMedGoogle Scholar
  45. 45.
    Schulze-Gahmen U, Brandsen J, Jones HD, Morgan D, Meijer L, Vesely J, Kim S-H Proteins Struct Funct Genet 22:378–391Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUK
  2. 2.Western Australian Biomedical Research Institute, School of Biomedical Sciences and School of PharmacyCurtin University of TechnologyPerthAustralia
  3. 3.Computer-Aided Molecular Design Laboratory, Guggenheim 711Mayo Clinic College of MedicineRochesterUSA

Personalised recommendations