Journal of Molecular Modeling

, Volume 12, Issue 6, pp 953–963 | Cite as

The structure of 5a,6–anhydrotetracycline and its Mg2+ complexes in aqueous solution

Original paper

Abstract

Semiempirical molecular orbital theory has been used for a systematic scan of the binding positions for a Mg2+ ion with 5a,6–anhydrotetracycline taking both conformational flexibility and possible different tautomeric forms into account. The magnesium ion has been calculated alone and with four or five complexed water molecules in order to simulate the experimental situation more closely. The results are analyzed by comparing the behavior of the title compound with that of tetracycline itself and possible causes for the stronger induction of the Tetracycline Receptor (TetR) by 5a,6–anhydrotetracycline than by tetracycline are considered.

Energetically favored 3D -structure of the zwitteranionic 5a,6-anhydrotetracycline magnesium complex in solution

Keywords

AM1 5a,6–anhydrotetracycline Conformational analysis Magnesium interactions 

Notes

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft (Collaborative Research Center 473: Mechanisms of Transcriptional Regulation, Research Training Group 805/1: Protein–Protein Interactions) for financial support.

Supplementary material

894_2005_55_MOESM1_ESM.pdf (56 kb)
Table S1 Angles and their ranges used in the cluster analysis of the “hot” structures (PDF 48 kb)
894_2005_55_MOESM2_ESM.zip (25 kb)
S2 Zip-file “GeometricData.zip” with the coordinates of the minima for each cluster/protonation pattern/water complexation sphere. The name tag indicates the protonation pattern, the conformation and the amount of water molecules in the complexation sphere (ZIP 26 kb)

References

  1. 1.
    Chopra I, Roberts M (2001) Microbiol Mol Biol R 65:232–260CrossRefGoogle Scholar
  2. 2.
    Hinrichs W, Orth P, Kisker C, Schnappinger D, Hillen W, Saenger W (1999) NATO Science Series, Series C: Mathematical and Physical Sciences 519:349–365Google Scholar
  3. 3.
    Hillen W, Berens C (2002) BIOspektrum 8:355–358Google Scholar
  4. 4.
    Hasan T, Allen M, Cooperman BS (1985) J Org Chem 50:1755–1757CrossRefGoogle Scholar
  5. 5.
    Scholz O, Schubert P, Kintrup M, Hillen W (2000) Biochemistry 39:10914–10920CrossRefGoogle Scholar
  6. 6.
    Takahashi M, Altschmied L, Hillen W (1986) J Mol Bio 187:341–348CrossRefGoogle Scholar
  7. 7.
    Mitscher LA, Bonacci AC, Sokoloski TD (1968) Tetrahedron Lett 9:5361–5364CrossRefGoogle Scholar
  8. 8.
    Lanig H, Gottschalk M, Schneider S, Clark T (1999) J Mol Model 5:46–62CrossRefGoogle Scholar
  9. 9.
    Othersen OG, Beierlein F, Lanig H, Clark T (2003) J Phys Chem B 107:13743–13749CrossRefGoogle Scholar
  10. 10.
    Othersen OG, Lanig H, Clark T (2006) J Phys Chem B (in preparation)Google Scholar
  11. 11.
    Othersen OG, Lanig H, Clark T (2003) J Med Chem 46:5571–5574CrossRefGoogle Scholar
  12. 12.
    Machado FC, Demicheli C, Garnier-Suillerot A, Beraldo H (1995) J Inorg Biochem 60:163–173CrossRefGoogle Scholar
  13. 13.
    Cosentino U, Varì RM, Saracino GAA, Pitea D, Moro G, Salmona M (2005) J Mol Model 11:17–25CrossRefGoogle Scholar
  14. 14.
    Petrov AS, George R, Lamm G (2004) J Phys Chem B 108:6072–6081CrossRefGoogle Scholar
  15. 15.
    Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Ross WS, Simmerling CL, Darden TA, Merz Jr KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Weiner PK, Kollman PA (1997) AMBER 5. University of California, San FranciscoGoogle Scholar
  16. 16.
    Cornell WD, Cieplak P, Bayly C, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  17. 17.
    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2003) Vamp, 9.0. ErlangenGoogle Scholar
  18. 18.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  19. 19.
    Hutter MC, Reimers JR, Hush NS (1998) J Phys Chem B 102:8080–8090CrossRefGoogle Scholar
  20. 20.
    Klamt A, Schüürmann G (1993) J Chem Soc Perk T 2:799–805CrossRefGoogle Scholar
  21. 21.
    Grassy G, Blaney F, Bradshaw J, Huxley P, Lahana R, Snarey M (2000) Tsar 3.3. OxfordGoogle Scholar
  22. 22.
    Ward JH (1963) JASA 58:236–244Google Scholar
  23. 23.
    Protein Data Bank, http://www.rcsb.org/pdb
  24. 24.
    Heisterberg D, Labanowski J (1992) Quatfit. Columbus, Ohio; http://www.ccl.net/cca/software/SOURCES/C/quaternion-mol-fit/index.shtml
  25. 25.
    Dos Santos HF, de Almeida WB, Zerner MC (1998) J Pharm Sci 87:190–195CrossRefGoogle Scholar
  26. 26.
    Dos Santos HF, Nascimento Jr CS, Belletato P, de Almeida WB (2003) J Mol Struct (Theochem) 626:305–319CrossRefGoogle Scholar
  27. 27.
    de Almeida WB, Dos Santos HF, Zerner MC (1998) J Pharm Sci 87:1101–1108CrossRefGoogle Scholar
  28. 28.
    de Almeida WB, Dos Santos HF, Rocha WR, Zerner MC (1998) J Chem Soc, Dalton Trans 15:2531–2536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Olaf G. Othersen
    • 1
  • Harald Lanig
    • 1
  • Timothy Clark
    • 1
  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations