Journal of Molecular Modeling

, Volume 12, Issue 5, pp 569–576 | Cite as

Theoretical study of hydrogenation of the doubly aromatic B7 cluster

  • Anastassia N. Alexandrova
  • Eldon Koyle
  • Alexander I. Boldyrev
Original Paper

Abstract

We have studied the influence of hydrogenation on the relative stability of the low-lying isomers of the anionic B7 cluster, computationally. It is known that the pure-boron B7 cluster has a doubly (σ- and π-) aromatic C6v (3A1) quasi-planar wheel-type triplet global minimum (structure 1), a low-lying σ-aromatic and π-antiaromatic quasi-planar singlet C2v (1A1) isomer 2 (0.7 kcal mol−1 above the global minimum), and a planar doubly (σ- and π-) antiaromatic C2v (1A1) isomer 3 (7.8 kcal mol−1 above the global minimum). However, upon hydrogenation, an inversion in the stability of the species occurs. The planar B7H2 (C2v, 1A1) isomer 4, originated from the addition of two hydrogen atoms to the doubly antiaromatic B7 isomer 3, becomes the global minimum structure. The second most stable B7H2 isomer 5, originated from the quasi-planar triplet wheel isomer 1 of B7, was found to be 27 kcal mol−1 higher in energy. The inversion in stability occurs due to the loss of the doubly aromatic character in the wheel-type global minimum isomer (C6v, 3A1) of B7 upon H2−addition. In contrast, the planar isomer of B7 (C2v, 1A1) gains aromatic character upon addition of two hydrogen atoms, which makes it more stable.

Figure

The B7H2-global minimum structure and its σ-aromatic and π-antiaromatic MOs

Keywords

Multiple aromaticity Boron hydrides Boron clusters 

References

  1. 1.
    Hanley L, Whitten JL, Anderson SL (1988) J Phys Chem 92:5803–5812CrossRefGoogle Scholar
  2. 2.
    Hanley L, Anderson SL (1987) J Phys Chem 91:5161–5163CrossRefGoogle Scholar
  3. 3.
    Hanley L, Anderson SL (1988) J Chem Phys 89:2848–2860CrossRefGoogle Scholar
  4. 4.
    Hintz PA, Ruatta SA, Anderson SL (1990) J Chem Phys 92:292–303CrossRefGoogle Scholar
  5. 5.
    Ruatta SA, Hintz PA, Anderson SL (1991) J Chem Phys 94:2833–2847CrossRefGoogle Scholar
  6. 6.
    Hintz PA, Sowa MB, Ruatta SA, Anderson SL (1991) J Chem Phys 94:6446–6458CrossRefGoogle Scholar
  7. 7.
    Placa SJL, Roland PA, Wynne JJ (1992) Chem Phys Lett 190:163–168CrossRefGoogle Scholar
  8. 8.
    Bonacic-Koutecky V, Fantucci P, Koutecky J (1991) Chem Rev 91:1035–1108CrossRefGoogle Scholar
  9. 9.
    Kato H, Yamashita K, Morokuma K (1992) Chem Phys Lett 190:361–366CrossRefGoogle Scholar
  10. 10.
    Ray AK, Howard IA, Kanal KM (1992) Phys Rev B 45:14247–14255CrossRefGoogle Scholar
  11. 11.
    Boustani I (1997) Phys Rev B 55:16426–16438CrossRefGoogle Scholar
  12. 12.
    Wang ZX, Schleyer PvR (2001) Science 292:2465–2469CrossRefPubMedGoogle Scholar
  13. 13.
    Zhai H-J, Wang LS, Alexandrova AN, Boldyrev AI, Zakrzewski VG (2003) J Phys Chem A 107:9319–9328CrossRefGoogle Scholar
  14. 14.
    Zhai H-J, Wang LS, Alexandrova AN, Boldyrev AI (2002) J Chem Phys 117:7917–7924CrossRefGoogle Scholar
  15. 15.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Sheiner E, Fowler PW (2003) J Phys Chem A 107:1359–1369CrossRefGoogle Scholar
  16. 16.
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang LS (2004) J Phys Chem A 108:3509–3517CrossRefGoogle Scholar
  17. 17.
    Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Angew Chem Int Ed 42:6004–6008CrossRefGoogle Scholar
  18. 18.
    Zhai H-J, Kiran B, Li J, Wang LS (2003) Nat Mater 2:827–833CrossRefPubMedGoogle Scholar
  19. 19.
    Chandrasekhar J, Jemmis ED, Schleyer PvR (1979) Tetrahedron Lett 39:3707–3710CrossRefGoogle Scholar
  20. 20.
    Martin-Santamaria S, Rzepa HS (2000) Chem Commun 16:1503–1504CrossRefGoogle Scholar
  21. 21.
    Präsang C, Mlodzianowska A, Sahin Y, Hofmann M, Geiseler G, Massa W, Berndt A (2002) Angew Chem Int Ed 41:3380–3382CrossRefGoogle Scholar
  22. 22.
    Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2002) Angew Chem Int Ed 41:1526–1529CrossRefGoogle Scholar
  23. 23.
    Präsang C, Mlodzianowska A, Geiseler G, Massa W, Hofmann M, Berndt A (2003) Pure Appl Chem 75:1175–1182CrossRefGoogle Scholar
  24. 24.
    Amseis P, Mesbah W, Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2003) Organometallics 22:1594–1596CrossRefGoogle Scholar
  25. 25.
    Mesbah W, Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2003) Angew Chem Int Ed 42:1717–1719CrossRefGoogle Scholar
  26. 26.
    Lipscomb WN (1963) Boron hydrides. Benjamin, New YorkGoogle Scholar
  27. 27.
    Muetterties EL (1975) Boron hydride chemistry. Academic, New YorkGoogle Scholar
  28. 28.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  29. 29.
    Ricca A, Bauschlicher CW Jr (1997) J Chem Phys 106:2317–2322CrossRefGoogle Scholar
  30. 30.
    Curtiss LA, Pople JA (1989) J Chem Phys 91:4809–4812CrossRefGoogle Scholar
  31. 31.
    Schleyer PvR, Najafian K, Mebel A (1998) Inorg Chem 37:6765–6772CrossRefPubMedGoogle Scholar
  32. 32.
    Goss JP, Briddon PR, Jones R, Teukam Z, Ballutaud D, Jomard F, Chevallier J, Bernard M, Deneuville A (2003) Phys Rev B 68:235209–235218CrossRefGoogle Scholar
  33. 33.
    DiLabio GA, Matusek DR (2000) Chem Phys Lett 317:597–602CrossRefGoogle Scholar
  34. 34.
    Wang P, Orimo S, Tanabe K, Fujii H (2003) J Alloys Comp 350:218–221CrossRefGoogle Scholar
  35. 35.
    Boustani I (1995) Chem Phys Lett 240:135–140CrossRefGoogle Scholar
  36. 36.
    Boustani I, Quandt A, Hernandez E, Rubio A (1999) J Chem Phys 110:3176–3185CrossRefGoogle Scholar
  37. 37.
    Boustani I (1994) Int J Quantum Chem 52:1081–1111CrossRefGoogle Scholar
  38. 38.
    Ricca A, Bauschlicher CW Jr (1996) Chem Phys 208:233–242CrossRefGoogle Scholar
  39. 39.
    Kato H, Tanaka E (1991) J Comput Chem 12:1097–1107CrossRefGoogle Scholar
  40. 40.
    Alexandrova AN, Boldyrev AI, Fu Y-J, Wang X-B, Wang L-S (2004) J Chem Phys 121:5709–5719CrossRefPubMedGoogle Scholar
  41. 41.
    Hartke B (1993) J Phys Chem 97:9973–9976CrossRefGoogle Scholar
  42. 42.
    Deaven DM, Ho KM (1995) Phys Rev Lett 75:288–291CrossRefPubMedGoogle Scholar
  43. 43.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  44. 44.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GM, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu A, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wang MW, Gonzales C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc., PittsburghGoogle Scholar
  47. 47.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  48. 48.
    Cizek J (1969) Adv Chem Phys 14:35–89CrossRefGoogle Scholar
  49. 49.
    Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219–5227CrossRefGoogle Scholar
  50. 50.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294–301CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  52. 52.
    Hegarty D, Robb MA (1979) Mol Phys 38:1795–1812CrossRefGoogle Scholar
  53. 53.
    Eade RHE, Robb MA (1981) Chem Phys Lett 83:362–368CrossRefGoogle Scholar
  54. 54.
    Schlegel HB, Robb MA (1982) Chem Phys Lett 93:43–46CrossRefGoogle Scholar
  55. 55.
    Bernardi F, Bottini A, McDouglas JJW, Robb MA, Schlegel HB (1984) Far Symp Chem Soc 19:137–147CrossRefGoogle Scholar
  56. 56.
    Yamamoto N, Vreven T, Robb MA, Frisch MJ, Schlegel MA (1996) Chem Phys Lett 250:373–378CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Ragazos IN, Robb MA, Schlegel HB (1992) Chem Phys Lett 189:524–528CrossRefGoogle Scholar
  58. 58.
    Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41–62CrossRefGoogle Scholar
  59. 59.
    Carpenter JE (1987) PhD Thesis, University of Wisconsin, MadisonGoogle Scholar
  60. 60.
    Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  61. 61.
    Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  62. 62.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  63. 63.
    Schaftenaar G (1998) MOLDEN 3.4. CAOS/CAMM Center, The NetherlandsGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Anastassia N. Alexandrova
    • 1
  • Eldon Koyle
    • 1
  • Alexander I. Boldyrev
    • 1
  1. 1.Department of Chemistry and BiochemistryUtah State University LoganUSA

Personalised recommendations