Journal of Molecular Modeling

, Volume 10, Issue 5–6, pp 305–316 | Cite as

Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits

  • Mathias-Costa Blaise
  • Ramanathan Sowdhamini
  • Metpally Raghu Prasad Rao
  • Nithyananda Pradhan
Original Paper

Abstract

The ionotropic N-methyl-d-aspartate (NMDA) receptor is of importance in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 or NR3 subunits. We have carried out evolutionary trace (ET) analysis of forty ionotropic glutamate receptor (IGRs) sequences to identify and characterize the residues forming the binding socket. We have also modeled the ligand binding core (S1S2) of NMDA receptor subunits using the recently available crystal structure of NR1 subunit ligand binding core which shares ~40% homology with other NMDA receptor subunits. A short molecular dynamics simulation of the glycine-bound form of wild-type and double-mutated (D481N; K483Q) NR1 subunit structure shows considerable RMSD at the hinge region of S1S2 segment, where pore forming transmembrane helices are located in the native receptor. It is suggested that the disruption of domain closure could affect ion-channel activation and thereby lead to perturbations in normal animal behavior. In conclusion, we identified the amino acids that form the ligand-binding pocket in many ionotropic glutamate receptors and studied their hydrogen bonded and nonbonded interaction patterns. Finally, the disruption in the S1S2 domain conformation (of NR1 subunit- crystal structure) has been studied with a short molecular dynamics simulation and correlated with some experimental observations.

Figure The figure shows the binding mechanism of glutamate with NR2B subunit of the NMDA receptor. Glutamate is shown in cpk, hydrogen bonds in dotted lines and amino acids in blue. The amino acids shown here are within a 4-Å radius of the ligand (glutamate)

Keywords

NMDA Ligand binding core S1S2 segment ET analysis Homology modeling Hydrogen bonding 

References

  1. 1.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) Pharmacol Rev 51:7–61PubMedGoogle Scholar
  2. 2.
    Cull-Candy S, Brickley S, Farrant M (2001) Curr Opin Neurobiol 11:327–335CrossRefPubMedGoogle Scholar
  3. 3.
    Mayer ML, Westbrook GL, Guthrie PB (1984) Nature 309:261–263PubMedGoogle Scholar
  4. 4.
    Madison DV, Malenka RC, Nicoll RA (1991) Annu Rev Neurosci 14:379–397CrossRefPubMedGoogle Scholar
  5. 5.
    Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B Seeburg PH (1992) Science 256:1217–1221PubMedGoogle Scholar
  6. 6.
    Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M (1992) Nature 358:36–41CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson JW, Ascher P (1987) Nature 325:529–531CrossRefPubMedGoogle Scholar
  8. 8.
    Kleckner NW, Dingledine R (1988) Science 241:835–837PubMedGoogle Scholar
  9. 9a.
    Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Neuron 18:493–503CrossRefPubMedGoogle Scholar
  10. 9b.
    Kemp JA, Bluethmann H, Kew JN (2002) 22:6713–6723PubMedGoogle Scholar
  11. 10.
    Anson LC, Chen PE, Wyllie DJ, Colquhoun D, Schoepfer R (1998) J Neurosci 18:581–589PubMedGoogle Scholar
  12. 11.
    Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Nature 415:793-798PubMedGoogle Scholar
  13. 12.
    Matsuda K, Kamiya Y, Matsuda S, Yuzaki M (2002) Brain Res Mol Brain Res 100:43–52CrossRefPubMedGoogle Scholar
  14. 13.
    Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Nature 393:377–381CrossRefPubMedGoogle Scholar
  15. 14.
    Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF (2001) J Neurosci 21:1228–1237PubMedGoogle Scholar
  16. 15.
    Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) J Neurosci 15:6498–6508PubMedGoogle Scholar
  17. 16.
    Furukawa H, Gouaux E (2003) EMBO J 22:2873–2885CrossRefPubMedGoogle Scholar
  18. 17.
    Armstrong N, Gouaux E (2000) Neuron 28:165–181CrossRefPubMedGoogle Scholar
  19. 18.
    Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF (1994) Neuron 13:1345–1357CrossRefPubMedGoogle Scholar
  20. 19.
    Oh BH, Pandit J, Kang CH, Nikaido K, Gokcen S, Ames GF, Kim SH (1993) J Biol Chem 268:11348–1155PubMedGoogle Scholar
  21. 20.
    Lummis SC, Fletcher EJ, Green T (2002) Neuropharmacology 42:437–443CrossRefPubMedGoogle Scholar
  22. 21.
    Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS (2003) J Med Chem 46:1609–1616CrossRefPubMedGoogle Scholar
  23. 22.
    Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS, Bachurin SO (2002) J Med Chem 45:3836–3843CrossRefPubMedGoogle Scholar
  24. 23.
    Kuusinen A, Arvola M, Keinanen K (1995) EMBO J 14:6327–6332PubMedGoogle Scholar
  25. 24.
    Ivanovic A, Reilander H, Laube B, Kuhse J (1998) J Biol Chem 273:19933–19937CrossRefPubMedGoogle Scholar
  26. 25.
    Keinanen K, Jouppila A, Kuusinen A (1998) Biochem J 330:1461–1467PubMedGoogle Scholar
  27. 26.
    Lichtarge O, Bourne HR, Cohen FE (1996) Proc Natl Acad Sci USA 93:7507–7511CrossRefPubMedGoogle Scholar
  28. 27.
    Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, Morgan JI, Connor JA, Curran T (1994) Neuron 13:325–338CrossRefPubMedGoogle Scholar
  29. 28.
    Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T (2001) J Neurosci 21:750–757PubMedGoogle Scholar
  30. 29.
    Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S (1994) Cell 76:427–437CrossRefPubMedGoogle Scholar
  31. 30.
    Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Cell 98:427–436CrossRefPubMedGoogle Scholar
  32. 31.
    Kiefer F, Jahn H, Koester A, Montkowski A, Reinscheid RK, Wiedemann K (2003) Biol Psychiatry 53:345–351CrossRefPubMedGoogle Scholar
  33. 32.
    Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E, Kemp JA, Bluethmann H, Kew JN (2002) J Neurosci 22:6713–6723PubMedGoogle Scholar
  34. 33.
    Kew JN, Koester A, Moreau JL, Jenck F, Ouagazzal AM, Mutel V, Richards JG, Trube G, Fischer G, Montkowski A, Hundt W, Reinscheid RK, Pauly-Evers M, Kemp JA, Bluethmann H (2000) J Neurosci 20:4037–4049PubMedGoogle Scholar
  35. 34.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  36. 35.
    Rost B, Sander C (1993) J Mol Biol 232:584–599CrossRefPubMedGoogle Scholar
  37. 36.
    Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  38. 37.
    Sali A, Blundell TL (1993) J Mol Biol 234:779–815CrossRefPubMedGoogle Scholar
  39. 38.
    Luthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85CrossRefPubMedGoogle Scholar
  40. 39.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Jol Appl Crystal 26:283–291CrossRefGoogle Scholar
  41. 40.
    All tools utilized herein were accessed and utilized as implemented in Insight II-97.5, Accelrys (http://www.accelrys.com)
  42. 41.
    Kleywegt GJ, Jones TA (1997) Methods Enzymol 277:525–545CrossRefGoogle Scholar
  43. 42.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723PubMedGoogle Scholar
  44. 43.
    Sayle RA, Milner-White EJ (1995) Trends Biochem Sci 20:374CrossRefPubMedGoogle Scholar
  45. 44.
    Chothia C, Lesk AM (1986) EMBO J 5:823–826PubMedGoogle Scholar
  46. 45.
    Zvelebil MJ, Barton GJ, Taylor WR, Sternberg MJ (1987) J Mol Biol 195:957–961PubMedGoogle Scholar
  47. 46.
    Baldwin JM (1993) EMBO J 12:1693–1703PubMedGoogle Scholar
  48. 47.
    Zvelebil MJ, Sternberg MJ (1988) Protein Eng 2:127–138PubMedGoogle Scholar
  49. 48 .
    Arinaminpathy Y, Biggin PC, Shrivastava IH, Sansom MS (2003) FEBS Lett 553:321–327CrossRefPubMedGoogle Scholar
  50. 49.
    Arinaminpathy Y, Sansom MS, Biggin PC (2002) Biophys J 82:676–683PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Mathias-Costa Blaise
    • 1
  • Ramanathan Sowdhamini
    • 2
  • Metpally Raghu Prasad Rao
    • 2
  • Nithyananda Pradhan
    • 1
  1. 1.Department of PsychopharmacologyNational Institute of Mental Health and Neuro Sciences (NIMHANS)BangaloreIndia
  2. 2.National Centre for Biological Sciences (NCBS)TIFRBangaloreIndia

Personalised recommendations