Journal of Molecular Modeling

, Volume 10, Issue 2, pp 155–164 | Cite as

Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements

  • James J. P. StewartEmail author
Original Paper


The NDDO semiempirical methods MNDO, AM1, and PM3 have been extended to all the remaining non-radioactive elements of the main group, excluding the noble gases. Most of the new elements are of Groups I and II. 44 sets of parameters are presented for the following methods and elements. MNDO: Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sb, Te, Cs, Ba, Tl, and Bi; AM1: Li, Be, Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sn, Sb, Te, Cs, Ba, Tl, Pb, and Bi; PM3: B, Na, K, Ca, Rb, Sr, Cs, and Ba. Average errors are presented for heats of formation, molecular geometries, etc.


Semiempirical methods MNDO AM1 PM3 Parameter optimization 



This work was funded by grant 1 R43 GM067327-01 from the National Institutes of Health.


  1. 1.
    Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129–S135Google Scholar
  2. 2.
    Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47:2026–2033Google Scholar
  3. 3.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907Google Scholar
  4. 4.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4907–4917Google Scholar
  5. 5.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909Google Scholar
  6. 6.
    Stewart JJP (1989) J Comput Chem 10:209–220Google Scholar
  7. 7.
    Stewart JJP (1989) J Comput Chem 10:221–264Google Scholar
  8. 8.
    Stewart JJP (1991) J Comput Chem 12:320–341Google Scholar
  9. 9.
    Thiel W (1982) MNDOC 2. QCPE No 438Google Scholar
  10. 10.
    Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100:777–784Google Scholar
  11. 11.
    Bock H, Ruppert K, Havlas Z, Fenske D (1990) Angew Chem Int Ed Engl 29:1042-1044CrossRefGoogle Scholar
  12. 12.
    Bock H, Näther C, Ruppert K (1992) J Chem Soc Chem Comm 765–766Google Scholar
  13. 13.
    Anders E, Koch R, Freunscht P (1993) J Comput Chem 14:1301–1312Google Scholar
  14. 14.
    Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089–4094CrossRefGoogle Scholar
  15. 15.
    Thiel W, Voityuk A (1996) J Phys Chem 100:616–629CrossRefGoogle Scholar
  16. 16.
    Stewart JJP (2002) MOPAC2002 1.0. Fujitsu Ltd, Tokyo, JapanGoogle Scholar
  17. 17.
    Brothers EN, Merz KM (2002) J Phys Chem B 106:2779–2785CrossRefGoogle Scholar
  18. 18.
    Dewar MJS, Healy EF, Kuhn DR, Holder AJ (1991) Organometallics 10:431–435Google Scholar
  19. 19.
    Gardner P, Preston SR, Siertsema R, Steele F (1993) J Comput Chem 14:1523Google Scholar
  20. 20.
    Hirota E, Kuchitsu K, Lafferty WJ, Ramsey DA (1992) Structure data on free polyatomic molecules. Landolt–Bornstein. Springer, BerlinGoogle Scholar
  21. 21.
    Schulz A, Smith BJ, Radom L (1999) J Phys Chem A 103:7522–7527CrossRefGoogle Scholar
  22. 22.
    Stewart JJP (2000) J Mol Struct 556:59–67CrossRefGoogle Scholar
  23. 23.
    Perkins PG, Stewart JJP (1980) J Chem Soc Faraday Trans II 76:520–533Google Scholar
  24. 24.
    Born M, von Kármán T (1912) Z Physik 13:297–309Google Scholar
  25. 25.
    Hutter MC, Reimers JR, Hush NS (1998) J Phys Chem B 102:8080–8090CrossRefGoogle Scholar
  26. 26.
    Huber KP, Herzberg G (2003) Constants of diatomic molecules. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, MD 20899Google Scholar
  27. 27.
    Dewar MJS, Grady GL, Healy EF (1987) Organometallics 6:186–189Google Scholar
  28. 28.
    Dewar MJS, Jie C (1989) Organometallics 8:1544–1547Google Scholar
  29. 29.
    Davis LP, Guidry RM, Williams JR, Dewar MJS, Rzepa HS (1981) J Comput Chem 2:433-445Google Scholar
  30. 30.
    Dewar MJS, Jie C, Zoebisch EG (1988) Organometallics 7:513–521Google Scholar
  31. 31.
    Dewar MJS, Healy EF (1983) J Comput Chem 4:542–551Google Scholar
  32. 32.
    Dewar MJS, Healy EF (1983) J Comput Chem 4:542–551Google Scholar
  33. 33.
    Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100:58–67Google Scholar
  34. 34.
    Dewar MJS, Grady GL, Stewart JJP (1984) J Am Chem Soc 106:6771–6773Google Scholar
  35. 35.
    Dewar MJS, Holder AJ (1990) Organometallics 9:508–511Google Scholar
  36. 36.
    Dewar MJS, Friedheim J, Grady G, Healy EF, Stewart JJP (1986) Organometallics 5:375-379Google Scholar
  37. 37.
    Dewar MJS, Jie C (1987) Organometallics 6:1486–1490Google Scholar
  38. 38.
    Dewar MJS, Healy EF, Stewart JJP (1984) J Comput Chem 5:358–362Google Scholar
  39. 39.
    Dewar MJS, McKee ML, Rzepa HS (1978) J Am Chem Soc 100:3607–3607Google Scholar
  40. 40.
    Dewar MJS, Jie C (1989) J Mol Struct (Theochem) 187:1–13Google Scholar
  41. 41.
    Dewar MJS, Reynolds CH (1986) J Comput Chem 7:140–143Google Scholar
  42. 42.
    Dewar MJS, Yuan Y-C (1990) Inorg Chem 29:3881–3890Google Scholar
  43. 43.
    Dewar MJS, Rzepa HS (1983) J Comput Chem 4:158–169Google Scholar
  44. 44.
    Dewar MJS, Holloway MK, Grady GL, Stewart JJP (1985) Organometallics 4:1973–1980Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Stewart Computational ChemistryColorado SpringsUSA

Personalised recommendations