Journal of Molecular Modeling

, Volume 10, Issue 2, pp 94–101

A computational approach to the synthesis of dirithromycin

Original Paper

Abstract

Dirithromycin is a macrolide antibiotic derived from erythromycin A. Dirithromycin is synthesized by the condensation of 9(S)-erythromycylamine with 2-(2-methoxyethoxy)-acetaldehyde. To gain insight into the synthesis, the condensation mechanism has been analyzed computationally by the AM1 method in the gas phase. First, the formation of the Schiff bases of dirithromycin and epidirithromycin from 9(S)-erythromycylamine and 2-(2-methoxyethoxy)-acetaldehyde were modeled. Then, the tautomerization of the Schiff bases to dirithromycin and epidirithromycin were considered. Finally, the epimerization of the Schiff base of epidirithromycin to the Schiff base of dirithromycin was investigated. Our results show that, even though carbinolamine forms faster for epidirithromycin than the corresponding structure for dirithromycin, dirithromycin is the major product of the synthesis.

Figure Synthesis of dirithromycin

Keywords

Dirithromycin Epidirithromycin Schiff base Ring–chain tautomerization Epimerization 

References

  1. 1.
    Lingerfelt B, Champney WS (1999) J Pharm Biomed Anal 20:459–469CrossRefPubMedGoogle Scholar
  2. 2.
    McGuire JM, Bunch PL, Anderson RC, Boaz HE, Flynn EH, Powell EH, Smith JW (1952) Antibiot Chemother 2:281–283Google Scholar
  3. 3.
    Corcoran JW (1984) In: Omura S (ed) Macrolide antibiotics: chemistry, biology and practice. Academic Press, Orlando, p 231Google Scholar
  4. 4.
    Clark RF, Ma Z, Wang S, Griesgraber G, Tufano M, Yong H, Li L, Zhang X, Nilius AM, Chu DTW, Or YS (2000) Bioorg Med Chem Lett 10:815–819CrossRefPubMedGoogle Scholar
  5. 5.
    Sigal MV, Wiley PF, Gerzon K, Flynn EH, Quarck UC, Weaver O (1956) J Am Chem Soc 78:388–395Google Scholar
  6. 6.
    Massey EH, Kitchell BS, Martin LD, Gerzon K (1974) J Med Chem 17:105–107PubMedGoogle Scholar
  7. 7.
    Kirst HA, Wind JA, Leeds JP, Willard KE, Debono M, Bonjouklian R, Greene JM (1990) J Med Chem 33:3086–3094PubMedGoogle Scholar
  8. 8.
    Gill JM, Johnson R (1994) Tetrahedron 50:3857–3868CrossRefGoogle Scholar
  9. 9.
    Luger P, Maier R (1979) J Crystallogr Mol Struct 9:329–338Google Scholar
  10. 10.
    Firl J, Prox A, Luger P, Maier R, Woitun E, Daneck K (1990) J Antibiot 43:1271–1277PubMedGoogle Scholar
  11. 11.
    Duran D, Aviyente V, Baysal C (2002) J Chem Soc Perkin Trans II 670–675Google Scholar
  12. 12.
    SPARTAN Version 5.1.3 (1998) Wavefunction Inc. 18401 Von Karman Ave. #370 Irvine, CA 92715Google Scholar
  13. 13.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.1. Gaussian, Pittsburgh, Pa.Google Scholar
  14. 14a.
    Becke AD (1993) J Chem Phys 98:1372–1377Google Scholar
  15. 14b.
    Becke AD (1993) J Chem Phys 98:5648–5652Google Scholar
  16. 14c.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  17. 15a.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728Google Scholar
  18. 15b.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261Google Scholar
  19. 15c.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222Google Scholar
  20. 16a.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001Google Scholar
  21. 16b.
    Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417CrossRefGoogle Scholar
  22. 17a.
    Gonzalez C, Schlegel HB (1989) J Phys Chem 90:2154–2161Google Scholar
  23. 17b.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527Google Scholar
  24. 18.
    Hall NE, Smith BJ (1998) J Phys Chem A 102:4930–4938CrossRefGoogle Scholar
  25. 19.
    Neuvonen K, Fulop F, Neuvonen H, Koch A, Kleinpeter E, Pihlaja K (2001) J Org Chem 66:4132–4140CrossRefPubMedGoogle Scholar
  26. 20.
    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:11273–11283CrossRefPubMedGoogle Scholar
  27. 21.
    Duran D, Aviyente V, Baysal C (2003) J Comput-Aided Mol Des (accepted for publication, 2004)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Art and SciencesBoğaziçi UniversityIstanbulTurkey
  2. 2.Laboratory of Computational Biology, Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations