Journal of Molecular Modeling

, Volume 9, Issue 5, pp 342–347 | Cite as

Local molecular properties and their use in predicting reactivity

  • Bernd Ehresmann
  • Bodo Martin
  • Anselm H. C. Horn
  • Timothy Clark
Original Paper

Abstract

Expressions for the local electron affinity, electronegativity and hardness are derived in analogy to the local ionization energy introduced by Sjoberg, Murray and Politzer. The local polarizability is also defined based on an additive atomic orbital polarizability model that uses Rivail's variational technique. The characteristics of these local properties at molecular surfaces and their relevance to electrophilic aromatic substitution, to SN2 reactivity and to the nucleophilicity of enolate ions are discussed.

Figure The local ionization energy at the SES surfaces of methyl benzoate. The color scale ranges from 375 (blue) to 550 kcal mol−1 (red). The blue areas are those for which interaction with an acceptor is most favorable.

Keywords

Surface properties AM1 Local ionization energy Local electron affinity Local hardness 

References

  1. 1.
    (1981) Chemical applications of atomic and molecular electrostatic potentials. In: Politzer P, Truhlar DG (eds) Reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems. Plenum, New YorkGoogle Scholar
  2. 2.
    Fukui K, Yonezawa T, Nagata C (1957) J Chem Phys 26:831–841Google Scholar
  3. 3.
    Fukui K (1975) Reactivity and structure concepts in organic chemistry, vol 2. Theory of orientation and stereoselection. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725Google Scholar
  5. 5.
    Fuentealba P, Contreras R (2002) Fukui function in chemistry. In: Sen KD (ed) Reviews of modern quantum chemistry, vol 2. World Scientific, Singapore, pp 1013–1052Google Scholar
  6. 6.
    Murray JS, Politzer P (1998) J Mol Struct (Theochem) 425:107–114Google Scholar
  7. 7.
    Murray JS, Ranganathan S, Politzer P (1991) J Org Chem 56:3734–3737Google Scholar
  8. 8.
    Politzer P, Lane P, Murray JS, Brinck T (1992) J Phys Chem 96:7938–7943CrossRefGoogle Scholar
  9. 9.
    Murray JS, Lane P, Brinck T, Paulsen K, Grice ME, Politzer P (1993) J Phys Chem 97:9369–9373Google Scholar
  10. 10.
    Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617Google Scholar
  11. 11.
    Breindl A, Beck B, Clark T, Glen RC (1997) J Mol Model 3:142–155CrossRefGoogle Scholar
  12. 12.
    Beck B, Breindl A, Clark T (2000) J Chem Inf Comput Sci 40:1046–1051CrossRefPubMedGoogle Scholar
  13. 13.
    Chalk AJ, Beck B, Clark T (2001) J Chem Inf Comput Sci 41:457–462CrossRefPubMedGoogle Scholar
  14. 14.
    Clark T (2000) Quantum cheminformatics: an oxymoron?, part 1. In: Hicks MG (ed) Chemical data analysis in the large: the challenge of the automation age.http://www.beilstein-institut.de/bozen2000/proceedings and Logos Verlag Berlin, pp 93–104
  15. 15.
    Clark T (2001) Quantum cheminformatics: an oxymoron?, part 2. In: Höltje H-D, Sippl W (eds) Rational approaches to drug design. Prous Science, Barcelona, pp 29-40Google Scholar
  16. 16.
    Chalk AJ, Beck B, Clark T (2001) J Chem Inf Comput Sci 41:1053–1059CrossRefPubMedGoogle Scholar
  17. 17.
    Hennemann M, Clark T (2002) J Mol Model 8:95–101CrossRefGoogle Scholar
  18. 18.
    Brüstle M, Beck B, Schindler T, King Mitchell T, Clark T (2002) J Med Chem 45:3345–3355CrossRefPubMedGoogle Scholar
  19. 19.
    Sjoberg P, Murray JS, Brinck T, Politzer PA (1990) Can J Chem 68:1440–1443Google Scholar
  20. 20.
    Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) J Chem Phys 95:6699–6704CrossRefGoogle Scholar
  21. 21.
    Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27 and references thereinCrossRefGoogle Scholar
  22. 22.
    Hussein W, Walker CG, Peralta-Inga Z, Murray JS (2001) Int J Quantum Chem 82:160-169CrossRefGoogle Scholar
  23. 23.
    Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct (Theochem) 501:241–250Google Scholar
  24. 24.
    Mulliken RS (1934) J Chem Phys 2:782–793Google Scholar
  25. 25.
    Pearson RG (1988) Inorg Chem 27:734–740Google Scholar
  26. 26.
    (a) Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807; (b) Donnelly RA, Parr RG (1978) J Chem Phys 69:4431–4439CrossRefGoogle Scholar
  27. 27.
    Politzer P, Weinstein H (1979) J Chem Phys 71:4218–4220CrossRefGoogle Scholar
  28. 28.
    Ehresmann B, De Groot M, Alex A, Clark T (2003), in preparationGoogle Scholar
  29. 29.
    Ping J, Murray JS, Politzer P (2003) Int J Quant Chem, in pressGoogle Scholar
  30. 30.
    Schürer G, Gedeck P, Gottschalk M, Clark T (1999) Int J Quantum Chem 75:17–31CrossRefGoogle Scholar
  31. 31.
    (a) Rinaldi D, Rivail JL (1974) Theor Chim Acta 32:243–251; (b) Rinaldi D, Rivail JL (1973) Theor Chim Acta 32:57–70Google Scholar
  32. 32.
    Martin B, Gedeck P, Clark T (2000) Int J Quantum Chem 77:473-497CrossRefGoogle Scholar
  33. 33.
    Martin B (2003) Doctoral thesis. Universität Erlangen-NürnbergGoogle Scholar
  34. 34.
    Schamberger J, Gedeck P, Martin B, Schindler T, Hennemann M, Horn AHC, Ehresmann B, Clark T (2003) available to download for Windows or Linux underhttp://www.ccc.uni-erlangen.de/clark/multimedialabor/_products/index.html
  35. 35.
    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2002) Erlangen. Available from Accelrys Inc, San Diego, Calif., USA (http://www.accelrys.com/mstudio/vamp.html)
  36. 36.
    Pascual-Ahuir JL, Silla E, Tuñon I (1994) J Comput Chem 15:1127–1138Google Scholar
  37. 37.
    (a) Delley B (1990) J Chem Phys 92:508–517; (b) Delley B (2000) J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  38. 38.
    Materials Studio version 2.2 (2002) Accelrys Inc, San DiegoGoogle Scholar
  39. 39.
    Perdew JP, Wang Y (1992) Phys Rev B45:13244–13249Google Scholar
  40. 40.
    Clark T (1988) J Am Chem Soc 110:1672–1678Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Bernd Ehresmann
    • 1
  • Bodo Martin
    • 1
  • Anselm H. C. Horn
    • 1
  • Timothy Clark
    • 1
  1. 1.Computer-Chemie-Centrum der Universität Erlangen-NürnbergNägelsbachstrasse 25ErlangenGermany

Personalised recommendations