Advertisement

Encoding music performance data in Humdrum and MEI

  • Johanna Devaney
  • Hubert Léveillé Gauvin
Article

Abstract

This paper proposes extensions to two existing music encoding formats, Humdrum and Music Encoding Initiative (MEI), in order to facilitate linking music performance data with corresponding score information. We began by surveying music scholars about their needs for encoding timing, loudness, pitch, and timbral performance data. We used the results of this survey to design and implement new spines in Humdrum syntax to encode summary descriptors at note, beat, and measure levels and new attributes in the MEI format to encode both note-wise summaries and continuous data. These extensions allow for multiple performances of the same piece to be directly compared with one another, facilitating both humanistic and computational study of recorded musical performances.

Keywords

Digital musicology Music performance Music encoding Music representations 

Notes

Acknowledgements

This work was supported by the National Endowment for the Humanities’ Office of Digital Humanities under Grant [number HD-228966-15] and the Fonds de recherche du Québec – Société et culture.

References

  1. 1.
    Berry, W.: Musical Structure and Performance. Yale University Press, New Haven (1989)Google Scholar
  2. 2.
    Cannam, C., Landone, C., Sandler, M., Bello, J.P.: The sonic visualiser: a visualisation platform for semantic descriptors from musical signals. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR), pp. 324–327 (2006)Google Scholar
  3. 3.
    Cone, E.T.: Musical Form and Musical Performance. W.W. Norton, New York (1968)Google Scholar
  4. 4.
    Cook, N.: The conductor and the theorist: Furtwängler, Schenker and the first movement of beethoven’s ninth symphony. In: Rink, J. (ed.) The Practice of Performance: Studies in Musical Interpretation, pp. 105–125. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  5. 5.
    Cook, N.: Analysing performance and performing analysis. In: Cook, N., Everist, M. (Eds.) Rethinking Music, pp. 239–261. Oxford University Press, Oxford (1999)Google Scholar
  6. 6.
    Cook, N.: Between process and product: music and/as performance. Music Theory Online 7(2) (2001)Google Scholar
  7. 7.
    Cook, N.: Performance analysis and Chopin’s mazurkas. Music. Sci. 11(2), 183–207 (2007)CrossRefGoogle Scholar
  8. 8.
    Cook, N.: Beyond the Score: Music as Performance. Oxford University Press, Oxford (2014)CrossRefGoogle Scholar
  9. 9.
    Dai, J., Mauch, M., Dixon, S.: Analysis of intonation trajectories in solo singing. In: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pp. 42–46 (2015)Google Scholar
  10. 10.
    Devaney, J., Léveillé Gauvin, H.: Representing and linking music performance data with score information. In: Proceedings of the 3rd International Workshop on Digital Libraries for Musicology, pp. 1–8. ACM (2016)Google Scholar
  11. 11.
    Devaney, J., Mandel, M., Fujinaga, I.: A study of intonation in three-part singing using the automatic music performance analysis and comparison toolkit (AMPACT). In: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pp. 511–516 (2012)Google Scholar
  12. 12.
    Dixon, S.: Automatic extraction of tempo and beat from expressive performances. J. New Music Res. 30(1), 39–58 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gingras, B., McAdams, S., Schubert, P.: The performer as analyst: a case study of J. S. Bach’s ‘Dorian’ Fugue (BWV 538). In: Music Theory and Interdisciplinarity—8th Congress of the Gesellschaft für Musiktheorie Graz 2008, pp. 305–318 (2010)Google Scholar
  14. 14.
    Goodchild, M., Gingras, B., McAdams, S.: Analysis, performance, and tension perception of an unmeasured prelude for harpsichord. Music Percept. Interdiscip. J. 34(1), 1–20 (2016)CrossRefGoogle Scholar
  15. 15.
    Hirata, K., Noike, K., Haruhiro, K.: A proposal for a performance data format. In: Proceedings of the Workshop on Methods for Automatic Music Performance and Their Applications in a Public Rendering Contest (IJCAI-03), pp. 65–69 (2003)Google Scholar
  16. 16.
    Howell, T.: Analysis and performance: the search for a middleground. In: Paynter, J. (Ed.) Companion to Contemporary Musical Thought, vol. 2, pp. 692–714. Routledge, London (1992)Google Scholar
  17. 17.
    Huron, D.: The Humdrum Toolkit: Reference Manual. Center for Computer Assisted Research in the Humanities, Menlo Park (1995)Google Scholar
  18. 18.
    Ide, N., Véronis, J.: Text Encoding Initiative: Background and Contexts, vol. 29. Springer, Berlin (1995)CrossRefGoogle Scholar
  19. 19.
    Lester, J.: Performance and analysis: interaction and interpretation. In: Rink, J. (Ed.) The Practice of Performance, pp. 197–216. Cambridge University Press, Cambridge, UK (1995)Google Scholar
  20. 20.
    Marchini, M., Ramirez, R., Papiotis, P., Maestre, E.: The sense of ensemble: a machine learning approach to expressive performance modelling in string quartets. J. New Music Res. 43(3), 303–317 (2014)CrossRefGoogle Scholar
  21. 21.
    Mauch, M., Cannam, C., Bittner, R., Fazekas, G., Salamon, J., Dai, J., Bello, J., Dixon, S.: Computer-aided melody note transcription using the tony software: accuracy and efficiency. In: Proceedings of the First International Conference on Technologies for Music Notation and Representation (TENOR 2015) (2015)Google Scholar
  22. 22.
    Narmour, E.: On the relationship of analytical theory to performance and interpretation. In: Solie, R., Narmour, E. (Eds.) Explorations of Music, the Arts, and Ideas: Essays in Honor of Leonard B. Meyer, pp 317–340. Pendragon Press, Stuyvesant (1987)Google Scholar
  23. 23.
    Oliveira, J.L., Davies, M.E., Gouyon, F., Reis, L.P.: Beat tracking for multiple applications: a multi-agent system architecture with state recovery. IEEE Trans. Audio Speech Lang. Process. 20(10), 2696–2706 (2012)CrossRefGoogle Scholar
  24. 24.
    Roland, P.: The music encoding initiative (MEI). In: Proceedings of the First International Conference on Musical Applications Using XML, pp. 55–59 (2002)Google Scholar
  25. 25.
    Rosenwald, L.: Theory, text-setting, and performance. J. Musicol. 11(1), 52–65 (1993)CrossRefGoogle Scholar
  26. 26.
    Schenker, H.: The Masterwork in Music: A Yearbook, vol. 1. Cambridge University Press, Cambridge (1925)Google Scholar
  27. 27.
    Schmalfeldt, J.: On the relation of analysis to performance: Beethoven’s “Bagatelles” Op. 126, Nos. 2 and 5. J. Music Theory 29(1), 1–31 (1985)CrossRefGoogle Scholar
  28. 28.
    Tovey, D.A.: A Companion to Beethoven’s Pianoforte Sonatas. Associated Board, London (1935)Google Scholar
  29. 29.
    Viglianti, R.: The music addressability API: a draft specification for addressing portions of music notation on the web. In: Proceedings of the 3rd International Workshop on Digital Libraries for Musicology, pp. 57–60 (2016)Google Scholar
  30. 30.
    Zhou, R., Reiss, J.D.: A real-time polyphonic music transcription system. In: Proceedings of the 4th Music Information Retrieval Evaluation EXchange (MIREX) (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of MusicThe Ohio State UniversityColumbusUSA

Personalised recommendations