International Journal on Digital Libraries

, Volume 18, Issue 4, pp 333–343 | Cite as

WW1LOD: an application of CIDOC-CRM to World War 1 linked data

  • Eetu MäkeläEmail author
  • Juha Törnroos
  • Thea Lindquist
  • Eero Hyvönen


The CIDOC-CRM standard indicates that common events, actors, places and timeframes are important in linking together cultural material, and provides a framework for describing them. However, merely describing entities in this way in two datasets does not yet interlink them. To do that, the identities of instances still need to be either reconciled, or be based on a shared vocabulary. The WW1LOD dataset presented in this paper was created to facilitate both of these approaches for collections dealing with the First World War. For this purpose, the dataset includes events, places, agents, times, keywords, and themes related to the war, based on over ten different authoritative data sources from providers such as the Imperial War Museum. The content is harmonized into RDF, and published as a Linked Open Data service. While generally based on CIDOC-CRM, some modeling choices used also deviate from it where our experience dictated such. In the article, these deviations are discussed in the hope that they may serve as examples where CIDOC-CRM itself may warrant further examination. As a demonstration of use, the dataset and online service have been used to create a contextual reader application that is able to link together and pull in information related to WW1 from, e.g., 1914–1918 Online, Wikipedia, WW1 Discovery, Europeana and the Digital Public Library of America.


Applying CIDOC-CRM Linked data Modeling Historical data Dataset Data interlinking 



We would like to thank Michael Ortiz (CU) and Tuomas Palonen (Aalto University) for annotating the resources, Michael Dulock (CU) and Holley Long (CU) for their aid with the digital collection and metadata, and Martha Hanna (CU), Patrick Tally (CU), Alan Kramer (Trinity College Dublin), Sophie de Schaepdrijver (Pennsylvania State University) and Tammy Proctor (Wittenberg University) for their expert opinion on the content.


  1. 1.
    Belgium Ministère de l’Intérieur et de l’Hygiène.: Annuaire statistique de la Belgique et du Congo Belge, vol 46. Brussels (1922)Google Scholar
  2. 2.
    Binding, C., May, K., Tudhope, D.: Semantic interoperability in archaeological datasets: data mapping and extraction via the CIDOC CRM. In: Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.) Research and Advanced Technology for Digital Libraries, Lecture Notes in Computer Science, vol. 5173. Springer, Berlin, pp. 280–290 (2008). doi: 10.1007/978-3-540-87599-4_30
  3. 3.
    Bountouri, L., Gergatsoulis, M.: The semantic mapping of archival metadata to the CIDOC CRM ontology. J. Arch. Org. 9(3–4), 174–207 (2011). doi: 10.1080/15332748.2011.650124
  4. 4.
    Crm, S.I.G.: How to implement crm time in rdf. Tech. rep, Amsterdam (2011)Google Scholar
  5. 5.
    Cron, H.: Geschichte des Deutschen Heeres im Weltkriege 1914–1918. Biblio-Verlag, Berlin (1937)Google Scholar
  6. 6.
    Doerr, M.: The CIDOC CRM—an ontological approach to semantic interoperability of metadata. AI Mag. 24(3), 75–92 (2003)Google Scholar
  7. 7.
    Giles, J.: Internet encyclopaedias go head to head. Nature 438(7070), 900–901 (2005). doi: 10.1038/438900a
  8. 8.
    Principal events, 1914–1918. History of the Great War based on official documents, London (1922)Google Scholar
  9. 9.
    Horne, J., Kramer, A.: German atrocities 1914: a history of denial. Yale University Press, New Haven (2001)Google Scholar
  10. 10.
    Hyvönen, E., Lindquist, T., Törnroos, J., Mäkelä, E.: History on the semantic web as linked data—an event gazetteer and timeline for World War I. In: Proceedings of CIDOC 2012—enriching cultural heritage. CIDOC, Helsinki (2012).
  11. 11.
    Hyvönen, E., Tuominen, J., Alonen, M., Mäkelä, E.: Linked Data Finland: A 7-star model and platform for publishing and re-using linked datasets. In: [22] , pp. 226–230 (2014). doi: 10.1007/978-3-319-11955-7_24
  12. 12.
    Lefevre, P.: (ed) Belgique et la Première Guerre mondiale, bibliographie. Musée royal de l’Armée, Brussels (1987–2001)Google Scholar
  13. 13.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia—a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2015)Google Scholar
  14. 14.
    Lin, C.H., Hong, J.S., Doerr, M.: Issues in an inference platform for generating deductive knowledge: a case study in cultural heritage digital libraries using the CIDOC CRM. Int. J. Digital Libraries 8(2), 115–132 (2008). doi: 10.1007/s00799-008-0034-0
  15. 15.
    Lindquist, T., Long, H.: How can educational technology facilitate student engagement with online primary sources? User needs assessment. Library Hi Tech 29(2), 224–241 (2011)Google Scholar
  16. 16.
    Lindquist, T., Dulock, M., Törnroos, J., Hyvönen, E., Mäkelä, E.: Using linked open data to enhance subject access in online primary sources. Catalog. Classif. Q. 51(8), 913–928 (2013). doi: 10.1080/01639374.2013.823583
  17. 17.
    Luyt, B., Tan, D.: Improving Wikipedia’s credibility: References and citations in a sample of history articles. J. Am. Soc. Inf. Sci. Technol. 61(4), 715–722 (2010). doi: 10.1002/asi.21304
  18. 18.
    Mäkelä, E.: Combining a REST lexical analysis web service with SPARQL for mashup semantic annotation from text. In: [22], pp. 424–428 (2014). doi: 10.1007/978-3-319-11955-7_60
  19. 19.
    Mäkelä, E., Hyvönen, E.: SPARQL SAHA, a configurable linked data editor and browser as a service. In: [22], pp. 434–438 (2014). doi: 10.1007/978-3-319-11955-7_62
  20. 20.
    Mäkelä, E., Hyvönen, E., Ruotsalo, T.: How to deal with massively heterogeneous cultural heritage data—lessons learned in CultureSampo. Semantic Web 3(1), 85–109 (2012)Google Scholar
  21. 21.
    Mäkelä, E., Lindquist, T., Hyvönen, E.: CORE—a contextual reader based on linked data. In: Proceedings of Digital Humanities 2016, long papers (2016)Google Scholar
  22. 22.
    Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.): The Semantic Web: ESWC 2014 Satellite Events—ESWC 2014 Satellite Events, Anissaras, Crete, Greece, May 25–29, 2014, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8798. Springer, Berlin (2014). doi: 10.1007/978-3-319-11955-7
  23. 23.
    Rector, L.H.: Comparison of Wikipedia and other encyclopedias for accuracy, breadth, and depth in historical articles. Ref. Services Rev. 36(1), 7–22 (2008)Google Scholar
  24. 24.
    Tessin, G.: Deutsche Verbände und Truppen. Biblio-Verlag, Osnabrück (1974)Google Scholar
  25. 25.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, DR., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds) International Semantic Web Conference, Lecture Notes in Computer Science, vol. 5823. Springer, Berlin, pp. 650–665 (2009)Google Scholar
  26. 26.
    Waters, N.L.: Why you can’t cite Wikipedia in my class. Commun. ACM 50(9), 15–17 (2007). doi: 10.1145/1284621.1284635

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Aalto UniversityHelsinkiFinland
  2. 2.University of Colorado BoulderBoulderUSA

Personalised recommendations