International Journal on Digital Libraries

, Volume 17, Issue 4, pp 305–338 | Cite as

Research-paper recommender systems: a literature survey

  • Joeran Beel
  • Bela Gipp
  • Stefan Langer
  • Corinna Breitinger
Article

Abstract

In the last 16 years, more than 200 research articles were published about research-paper recommender systems. We reviewed these articles and present some descriptive statistics in this paper, as well as a discussion about the major advancements and shortcomings and an overview of the most common recommendation concepts and approaches. We found that more than half of the recommendation approaches applied content-based filtering (55 %). Collaborative filtering was applied by only 18 % of the reviewed approaches, and graph-based recommendations by 16 %. Other recommendation concepts included stereotyping, item-centric recommendations, and hybrid recommendations. The content-based filtering approaches mainly utilized papers that the users had authored, tagged, browsed, or downloaded. TF-IDF was the most frequently applied weighting scheme. In addition to simple terms, n-grams, topics, and citations were utilized to model users’ information needs. Our review revealed some shortcomings of the current research. First, it remains unclear which recommendation concepts and approaches are the most promising. For instance, researchers reported different results on the performance of content-based and collaborative filtering. Sometimes content-based filtering performed better than collaborative filtering and sometimes it performed worse. We identified three potential reasons for the ambiguity of the results. (A) Several evaluations had limitations. They were based on strongly pruned datasets, few participants in user studies, or did not use appropriate baselines. (B) Some authors provided little information about their algorithms, which makes it difficult to re-implement the approaches. Consequently, researchers use different implementations of the same recommendations approaches, which might lead to variations in the results. (C) We speculated that minor variations in datasets, algorithms, or user populations inevitably lead to strong variations in the performance of the approaches. Hence, finding the most promising approaches is a challenge. As a second limitation, we noted that many authors neglected to take into account factors other than accuracy, for example overall user satisfaction. In addition, most approaches (81 %) neglected the user-modeling process and did not infer information automatically but let users provide keywords, text snippets, or a single paper as input. Information on runtime was provided for 10 % of the approaches. Finally, few research papers had an impact on research-paper recommender systems in practice. We also identified a lack of authority and long-term research interest in the field: 73 % of the authors published no more than one paper on research-paper recommender systems, and there was little cooperation among different co-author groups. We concluded that several actions could improve the research landscape: developing a common evaluation framework, agreement on the information to include in research papers, a stronger focus on non-accuracy aspects and user modeling, a platform for researchers to exchange information, and an open-source framework that bundles the available recommendation approaches.

Keywords

Recommender system User modeling Research paper recommender systems Content based filtering Review Survey 

References

  1. 1.
    Bollacker, K.D., Lawrence, S., Giles, C.L.: CiteSeer: an autonomous web agent for automatic retrieval and identification of interesting publications. In: Proceedings of the 2nd international conference on Autonomous agents, pp. 116–123 (1998)Google Scholar
  2. 2.
    Google Scholar, Scholar Update: Making New Connections, Google Scholar Blog. http://googlescholar.blogspot.de/2012/08/scholar-updates-making-new-connections.html
  3. 3.
    Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P., Jaakkola, T.: Mixed membership stochastic block models for relational data with application to protein–protein interactions. In: Proceedings of the International Biometrics Society Annual Meeting, pp. 1–34 (2006)Google Scholar
  4. 4.
    Arnold, A., Cohen, W.W.: Information extraction as link prediction: using curated citation networks to improve gene detection. In: Proceedings of the 4th International Conference on Wireless Algorithms, Systems, and Applications, pp. 541–550 (2009)Google Scholar
  5. 5.
    Beel, J., Langer, S., Genzmehr, M.: Sponsored vs. Organic (Research Paper) Recommendations and the Impact of Labeling. In: Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013), pp. 395–399 (2013)Google Scholar
  6. 6.
    Beel, J., Langer, S., Genzmehr, M., Nürnberger, A.: Persistence in Recommender Systems: Giving the Same Recommendations to the Same Users Multiple Times. In: Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013), vol. 8092, pp. 390–394 (2013)Google Scholar
  7. 7.
    Beel, J., Langer, S., Genzmehr, M., Nürnberger, A.: Introducing Docear’s Research Paper Recommender System. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’13), pp. 459–460 (2013)Google Scholar
  8. 8.
    Beel, J., Langer, S., Nürnberger, A., Genzmehr, M.: The Impact of Demographics (Age and Gender) and Other User Characteristics on Evaluating Recommender Systems. In: Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013), pp. 400–404 (2013)Google Scholar
  9. 9.
    Böhm, W., Geyer-schulz, A., Hahsler, M., Jahn, M.: Repeat-Buying Theory and Its Application for Recommender Services. In: Proceedings of the 25th Annual Conference of the Gesellschaft für Klassifikation e.V., pp. 229–239 (2003)Google Scholar
  10. 10.
    Baez, M., Mirylenka, D., Parra, C.: Understanding and supporting search for scholarly knowledge. In: Proceeding of the 7th European Computer Science Summit, pp. 1–8 (2011)Google Scholar
  11. 11.
    Beel, J., Gipp, B., Langer, S., Genzmehr, M.: Docear: an academic literature suite for searching, organizing and creating academic literature. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 465–466 (2011)Google Scholar
  12. 12.
    Beel, J., Gipp, B., Mueller, C.: SciPlore MindMapping’—a tool for creating mind maps combined with PDF and reference management. D-Lib Mag. 15(11) (2009)Google Scholar
  13. 13.
    Bethard, S., Jurafsky, D.: Who should I cite: learning literature search models from citation behavior. In: Proceedings of the 19th ACM international conference on Information and knowledge management, pp. 609–618 (2010)Google Scholar
  14. 14.
    Bogers, T., van den Bosch, A.: Recommending scientific articles using citeulike. In: Proceedings of the 2008 ACM conference on Recommender systems, pp. 287–290 (2008)Google Scholar
  15. 15.
    Bollen, J., Van de Sompel, H.: An architecture for the aggregation and analysis of scholarly usage data. In: Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries, pp. 298–307 (2006)Google Scholar
  16. 16.
    CiteSeerX, T.: About RefSeer. http://refseer.ist.psu.edu/about (2012)
  17. 17.
    CiteULike: My Top Recommendations. Website http://www.citeulike.org/profile/username/recommendations (2011)
  18. 18.
    CiteULike: Science papers that interest you. Blog. http://blog.citeulike.org/?p=11 (2009)
  19. 19.
    CiteULike: Data from CiteULike’s new article recommender. Blog, http://blog.citeulike.org/?p=136 (2009)
  20. 20.
    Caragea, C., Silvescu, A., Mitra, P., Giles, C.L.: Can’t See the Forest for the Trees? A Citation Recommendation System. In: iConference 2013 Proceedings, pp. 849–851 (2013)Google Scholar
  21. 21.
    Chandrasekaran, K., Gauch, S., Lakkaraju, P., Luong, H.: Concept-based document recommendations for citeseer authors. In: Proceedings of the 5th international conference on Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 83–92 (2008)Google Scholar
  22. 22.
    Choochaiwattana, W.: Usage of tagging for research paper recommendation. In: Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 2, pp. 439–442 (2010)Google Scholar
  23. 23.
    Councill, I., Giles, C., Di Iorio, E., Gori, M., Maggini, M., Pucci, A.: Towards next generation CiteSeer: a flexible architecture for digital library deployment. In: Research and Advanced Technology for Digital Libraries, pp. 111–122 (2006)Google Scholar
  24. 24.
    Dong, R., Tokarchuk, L., Ma, A.: Digging Friendship: Paper Recommendation in Social Network. In: Proceedings of Networking and Electronic Commerce Research Conference (NAEC 2009), pp. 21–28 (2009)Google Scholar
  25. 25.
    ExLibris: bX Usage-Based Services transform your discovery experience!, Web page, http://www.exlibrisgroup.com/category/bXUsageBasedServices (2013)
  26. 26.
    Ekstrand, M.D., Kannan, P., Stemper, J.A., Butler, J.T., Konstan, J.A., Riedl, J.T.: Automatically building research reading lists. In: Proceedings of the 4th ACM conference on Recommender systems, pp. 159–166 (2010)Google Scholar
  27. 27.
    Erosheva, E., Fienberg, S., Lafferty, J.: Mixed-membership models of scientific publications. Proc. Natl. Acad. Sci. U. S. Am. 101(Suppl 1), 5220–5227 (2004)CrossRefGoogle Scholar
  28. 28.
    Franke, M., Geyer-Schulz, A.: Using restricted random walks for library recommendations and knowledge space exploration. Int. J. Pattern Recognit. Artif. Intell. 21(02), 355–373 (2007)Google Scholar
  29. 29.
    Ferrara, F., Pudota, N., Tasso, C.: A Keyphrase-Based Paper Recommender System. In: Proceedings of the IRCDL’11, pp. 14–25 (2011)Google Scholar
  30. 30.
    Geyer-Schulz, A., Hahsler, M.: Comparing two recommender algorithms with the help of recommendations by peers. In: Proceedings of the WEBKDD 2002—Mining Web Data for Discovering Usage Patterns and Profiles, pp. 137–158 (2003)Google Scholar
  31. 31.
    Geyer-Schulz, A., Hahsler, M.: Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory. In: Proceedings of the 4th WebKDD Workshop: Web Mining for Usage Patterns and User Profiles, pp. 100–114 (2002)Google Scholar
  32. 32.
    Geyer-Schulz, A., Hahsler, M., Jahn, M.: A customer purchase incidence model applied to recommender services. In: Proceedings of the 3rd International Workshop on Mining Web Log Data Across All Customers Touch Points, pp. 25–47 (2002)Google Scholar
  33. 33.
    Geyer-Schulz, A., Hahsler, M., Jahn, M.: Recommendations for virtual universities from observed user behavior. In: Proceedings of the 24th Annual Conference of the Gesellschaft für Klassifikation e.V., pp. 273–280 (2002)Google Scholar
  34. 34.
    Geyer-Schulz, A., Hahsler, M., Jahn, M., Geyer, A.: Wissenschaftliche Recommendersysteme in Virtuellen Universitäten. In: Proceedings of the Symposiom of Unternehmen Hochschule, pp. 101–114 (2001)Google Scholar
  35. 35.
    Geyer-Schulz, A., Hahsler, M., Neumann, A., Thede, A.: An integration strategy for distributed recommender services in legacy library systems. In: Between Data Science and Applied Data Analysis. Springer, pp. 412–420 (2003)Google Scholar
  36. 36.
    Geyer-Schulz, A., Hahsler, M., Neumann, A., Thede, A.: Behavior-based recommender systems as value-added services for scientific libraries. Statistical Data Mining and Knowledge Discovery, pp. 433–454 (2003)Google Scholar
  37. 37.
    Geyer-Schulz, A., Hahsler, M., Thede, A.: Comparing Simple Association-Rules and Repeat-Buying Based Recommender Systems in a B2B Environment. In: Proceedings of the 26th Annual Conference of the Gesellschaft für Klassifikation e.V., pp. 421–429 (2003)Google Scholar
  38. 38.
    Geyer-Schulz, A., Neumann, A., Thede, A.: An architecture for behavior-based library recommender systems. Inf. Technol. Libr. 22(4), 165–174 (2003)MATHGoogle Scholar
  39. 39.
    Geyer-Schulz, A., Neumann, A., Thede, A.: Others also use: a robust recommender system for scientific libraries. In: Proceedings of the 7th European Conference on Digital Libraries, pp. 113–125 (2003)Google Scholar
  40. 40.
    Gillitzer, B.: Der Empfehlungsdienst BibTip - Ein flächendeckendes Angebot im Bibliotheksverbund Bayern. http://www.b-i-t-online.de/heft/2010-01/nachrichtenbeitrag3. pp. 1–4 (2010)
  41. 41.
    Gottwald, S.: Recommender Systeme fuer den Einsatz in Bibliotheken/Survey on recommender systems. Konrad-Zuse-Zentrum für Informationstechnik Berlin, ZIB-Report 11–30 (2011)Google Scholar
  42. 42.
    Geyer-Schulz, A., Hahsler, M., Jahn, M.: Educational and scientific recommender systems: designing the information channels of the virtual university. Int. J. Eng. Educ. 17(2), 153–163 (2001)Google Scholar
  43. 43.
    Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing system. In: Proceedings of the 3rd ACM conference on Digital libraries, pp. 89–98 (1998)Google Scholar
  44. 44.
    Gipp, B., Beel, J.: Citation proximity analysis (CPA)—a new approach for identifying related work based on co-citation analysis. In: Proceedings of the 12th international conference on Scientometrics and informetrics (ISSI’09), vol. 2, pp. 571–575 (2009)Google Scholar
  45. 45.
    Gipp, B., Beel, J., Hentschel, C.: Scienstein: a research paper recommender system. In: Proceedings of the international conference on Emerging trends in computing (ICETiC’09), pp. 309–315 (2009)Google Scholar
  46. 46.
    Gori, M., Pucci, A.: Research paper recommender systems: a random-walk based approach. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on Web intelligence, pp. 778–781 (2006)Google Scholar
  47. 47.
    Henning, V., Reichelt, J.: Mendeley-a last. fm for research? In: Proceedings of the IEEE 4th international conference on eScience, pp. 327–328 (2008)Google Scholar
  48. 48.
    Hwang, S.-Y., Hsiung, W.-C., Yang, W.-S.: A prototype WWW literature recommendation system for digital libraries. Online Inf. Rev. 27(3), 169–182 (2003)CrossRefGoogle Scholar
  49. 49.
    He, J., Nie, J.-Y., Lu, Y., Zhao, W.X.: Position-aligned translation model for citation recommendation. In: Proceedings of the 19th international conference on String processing and information retrieval, pp. 251–263 (2012)Google Scholar
  50. 50.
    He, Q., Kifer, D., Pei, J., Mitra, P., Giles, C.L.: Citation recommendation without author supervision. In: Proceedings of the 4th ACM international conference on Web search and data mining, pp. 755–764 (2011)Google Scholar
  51. 51.
    He, Q., Pei, J., Kifer, D., Mitra, P., Giles, L.: Context-aware citation recommendation. In: Proceedings of the 19th international conference on World wide web, pp. 421–430 (2010)Google Scholar
  52. 52.
    Hess, C.: Trust-Based Recommendations in Multi-Layer Networks. IOS Press, Amsterdam (2008)Google Scholar
  53. 53.
    Hess, C.: Trust-based recommendations for publications: a multi-layer network approach. TCDL Bull. 2(2), 190–201 (2006)Google Scholar
  54. 54.
    Hess, C., Stein, K., Schlieder, C.: Trust-enhanced visibility for personalized document recommendations. In: Proceedings of the 2006 ACM symposium on Applied computing, pp. 1865–1869 (2006)Google Scholar
  55. 55.
    Huang, S., Xue, G.R., Zhang, B.Y., Chen, Z., Yu, Y., Ma, W.Y.: Tssp: a reinforcement algorithm to find related papers. In: Proceedings of the IEEE/WIC/ACM international conference on Web intelligence (WI), pp. 117–123 (2004)Google Scholar
  56. 56.
    Huang, W., Kataria, S., Caragea, C., Mitra, P., Giles, C.L., Rokach, L.: Recommending citations: translating papers into references. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp. 1910–1914 (2012)Google Scholar
  57. 57.
    Huang, Z., Chung, W., Ong, T.H., Chen, H.: A graph-based recommender system for digital library. In: Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, pp. 65–73 (2002)Google Scholar
  58. 58.
    Jack, K.: Mendeley: recommendation systems for academic literature. Presentation at Technical University of Graz (TUG) (2012)Google Scholar
  59. 59.
    Jack, K.: Mendeley suggest: engineering a personalised article recommender system. Presentation at RecSysChallenge workshop 2012 (2012)Google Scholar
  60. 60.
    Jack, K.: Mahout becomes a researcher: large scale recommendations at Mendeley. Presentation at big data week conferences (2012)Google Scholar
  61. 61.
    Jiang, Y., Jia, A., Feng, Y., Zhao, D.: Recommending academic papers via users’ reading purposes. In: Proceedings of the 6th ACM conference on Recommender systems, pp. 241–244 (2012)Google Scholar
  62. 62.
    Jomsri, P., Sanguansintukul, S., Choochaiwattana, W.: A framework for tag-based research paper recommender system: an IR approach. In: Proceedings of the 24th international conference on Advanced information networking and applications (WAINA), pp. 103–108 (2010)Google Scholar
  63. 63.
    Kapoor, N., Chen, J., Butler, J.T., Fouty, G.C., Stemper, J.A., Riedl, J., Konstan, J.A.: Techlens: a researcher’s desktop. In: Proceedings of the 2007 ACM conference on Recommender systems, pp. 183–184 (2007)Google Scholar
  64. 64.
    Konstan, J.A., Kapoor, N., McNee, S.M., Butler, J.T.: Techlens: exploring the use of recommenders to support users of digital libraries. In: Proceedings of the coalition for networked information fall 2005 task force meeting, pp. 111–112 (2005)Google Scholar
  65. 65.
    Kataria, S., Mitra, P., Bhatia, S.: Utilizing context in generative bayesian models for linked corpus. In: Proceedings of the 24th AAAI conference on Artificial intelligence, pp. 1340–1345 (2010)Google Scholar
  66. 66.
    Kodakateri Pudhiyaveetil, A., Gauch, S., Luong, H., Eno, J.: Conceptual recommender system for CiteSeerX. In: Proceedings of the 3rd ACM conference on Recommender systems, pp. 241–244 (2009)Google Scholar
  67. 67.
    Kuberek, M., Mönnich, M.: Einsatz von Recommendersystemen in Bibliotheken Recommender systems in libraries. Presentation (2012)Google Scholar
  68. 68.
    Küçüktunç, O., Kaya, K., Saule, E., Catalyürek, U.V.: Fast recommendation on bibliographic networks. In: Proceedings of the IEEE/ACM international conference on Advances in social networks analysis and mining (ASONAM), pp. 480–487 (2012)Google Scholar
  69. 69.
    Küçüktunç, O., Kaya, K., Saule, E., Catalyürek, U.V.: Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning. Soc. Netw. Anal. Min. 3(4), 1097–1111 (2013)CrossRefGoogle Scholar
  70. 70.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Result Diversification in automatic citation recommendation. In: Proceedings of the iConference workshop on Computational scientometrics: theory and applications, pp. 1–4 (2013)Google Scholar
  71. 71.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Diversifying citation recommendations. arXiv preprint. arXiv:1209.5809. pp. 1–19 (2012)
  72. 72.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Recommendation on academic networks using direction aware citation analysis. arXiv preprint. arXiv:1205.1143. pp. 1–10 (2012)
  73. 73.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Direction awareness in citation recommendation. In: Proceedings of DBRank workshop in conjunction with VLDB’12. pp. 161–166 (2012)Google Scholar
  74. 74.
    Lao, N.: Efficient random walk inference with knowledge bases. PhD Thesis. The Carnegie Mellon University (2012)Google Scholar
  75. 75.
    Lao, N., Cohen, W.W.: Personalized reading recommendations for Saccharomyces genome database. Unpublished Paper. http://www.cs.cmu.edu/nlao/publication/2012/2012.dils.pdf. pp. 1–15 (2012)
  76. 76.
    Lao, N., Cohen, W.W.: Personalized reading recommendations for Saccharomyces genome database. Unpublished Poster. http://www.cs.cmu.edu/nlao/publication/2012/2012.dils.poster.portrat.pdf (2012)
  77. 77.
    Lao, N., Cohen, W. W.: Contextual recommendation with path constrained random walks. Unpublished. http://www.cs.cmu.edu/nlao/doc/2011.cikm.pdf. pp. 1–9 (2011)
  78. 78.
    Lakkaraju, P., Gauch, S., Speretta, M.: Document similarity based on concept tree distance. In: Proceedings of the 19th ACM conference on Hypertext and hypermedia, pp. 127–132 (2008)Google Scholar
  79. 79.
    Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Lawrence, K.D.B.S.: A system for automatic personalized tracking of scientific literature on the web. In: Proceedings of the 4th ACM conference on Digital libraries, pp. 105–113 (1999)Google Scholar
  81. 81.
    Lawrence, S.R., Bollacker, K.D., Giles, C.L.: Autonomous citation indexing and literature browsing using citation context. U.S. Patent US 6,738,780 B2Summer-2004Google Scholar
  82. 82.
    Lawrence, S.R., Giles, C. L., Bollacker, K.D.: Autonomous citation indexing and literature browsing using citation context. U.S. Patent US 6,289,342 B1Nov-2001Google Scholar
  83. 83.
    Li, H., Councill, I., Lee, W.-C., Giles, C. L.: CiteSeerx: an architecture and web service design for an academic document search engine. In: Proceedings of the 15th international conference on World wide web, pp. 883–884 (2006)Google Scholar
  84. 84.
    Liang, Y., Li, Q., Qian, T.: Finding relevant papers based on citation relations. In: Proceedings of the 12th international conference on Web-age information management, pp. 403–414 (2011)Google Scholar
  85. 85.
    Lin, J., Wilbur, W.J.: PubMed related articles: a probabilistic topic-based model for content similarity. BMC Bioinform. 8(1), 423–436 (2007)Google Scholar
  86. 86.
    Lu, Y., He, J., Shan, D., Yan, H.: Recommending citations with translation model. In: Proceedings of the 20th ACM international conference on Information and knowledge management, pp. 2017–2020 (2011)Google Scholar
  87. 87.
    McNee, S. M., Kapoor, N., Konstan, J.A.: Don’t look stupid: avoiding pitfalls when recommending research papers. In: Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, pp. 171–180 (2006)Google Scholar
  88. 88.
    Middleton, S.E., Alani, H., De Roure, D.C.: Exploiting synergy between ontologies and recommender systems. In: Proceedings of the semantic web workshop, pp. 1–10 (2002)Google Scholar
  89. 89.
    Middleton, S.E., De Roure, D., Shadbolt, N.R.: Ontology-based recommender systems. In: Handbook on Ontologies, pp. 779–796, Springer, Berlin (2009)Google Scholar
  90. 90.
    Middleton, S.E., De Roure, D.C., Shadbolt, N.R.: Foxtrot recommender system: user profiling, ontologies and the World Wide Web. In: Proceedings of the WWW conference, pp. 1–3 (2002)Google Scholar
  91. 91.
    Middleton, S.E., De Roure, D.C., Shadbolt, N.R.: Capturing knowledge of user preferences: ontologies in recommender systems. In: Proceedings of the 1st international conference on Knowledge capture, pp. 100–107 (2001)Google Scholar
  92. 92.
    Mönnich, M., Spiering, M.: Adding value to the library catalog by implementing a recommendation system. D-Lib Mag. 14(5), 4–11 (2008)Google Scholar
  93. 93.
    McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J.A., Riedl, J.: On the recommending of citations for research papers. In: Proceedings of the ACM conference on Computer supported cooperative work, pp. 116–125 (2002)Google Scholar
  94. 94.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 54–88 (2004)CrossRefGoogle Scholar
  95. 95.
    Monnich, M., Spiering, M.: Einsatz von BibTip als Recommendersystem im Bibliothekskatalog. Bibliotheksdienst 42(1), 54 (2008)CrossRefGoogle Scholar
  96. 96.
    Naak, A.: Papyres: un système de gestion et de recommandation d’articles de recherche. Master Thesis. Université de Montréal (2009)Google Scholar
  97. 97.
    Neumann, A.W.: Recommender Systems for Information Providers. Springer, Berlin (2009)Google Scholar
  98. 98.
    Naak, A., Hage, H., Aimeur, E.: A multi-criteria collaborative filtering approach for research paper recommendation in papyres. In: Proceedings of the 4th international conference MCETECH, pp. 25–39 (2009)Google Scholar
  99. 99.
    Naak, A., Hage, H., Aimeur, E.: Papyres: a research paper management system. In: Proceedings of the 10th E-Commerce Technology Conference on Enterprise Computing, E-Commerce and E-Services, pp. 201–208 (2008)Google Scholar
  100. 100.
    Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and citations. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 542–550 (2008)Google Scholar
  101. 101.
    Nascimento, C., Laender, A.H., da Silva, A.S., Gonçalves, M.A.: A source independent framework for research paper recommendation. In: Proceedings of the 11th annual international ACM/IEEE joint conference on Digital libraries, pp. 297–306 (2011)Google Scholar
  102. 102.
    Ozono, T., Goto, S., Fujimaki, N., Shintani, T.: P2p based knowledge source discovery on research support system papits. In: Proceedings of the 1st international joint conference on Autonomous agents and multiagent systems: part 1, pp. 49–50 (2002)Google Scholar
  103. 103.
    Ozono, T., Shintani, T.: P2P based information retrieval on research support system Papits. In: Proceedngs of the IASTED international conference on Artificial and computational intelligence, pp. 136–141 (2002)Google Scholar
  104. 104.
    Ozono, T., Shintani, T.: Paper classification for recommendation on research support system papits. IJCSNS Int. J. Comput. Sci. Netw. Secur. 6, 17–23 (2006)Google Scholar
  105. 105.
    Ozono, T., Shintani, T., Ito, T., Hasegawa, T.: A feature selection for text categorization on research support system Papits. In: Proceedings of the 8th Pacific Rim international conference on Artificial intelligence, pp. 524–533 (2004)Google Scholar
  106. 106.
    Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach. In: Proceedings of the 16th conference on Uncertainty in artificial intelligence, pp. 473–480 (2000)Google Scholar
  107. 107.
    Petinot, Y., Giles, C.L., Bhatnagar, V., Teregowda, P.B., Han, H.: Enabling interoperability for autonomous digital libraries: an API to citeseer services. In: Digital Libraries, 2004. Proceedings of the 2004 joint ACM/IEEE conference on, pp. 372–373 (2004)Google Scholar
  108. 108.
    Petinot, Y., Giles, C.L., Bhatnagar, V., Teregowda, P.B., Han, H., Councill, I.: A service-oriented architecture for digital libraries. In: Proceedings of the 2nd international conference on Service oriented computing, pp. 263–268 (2004)Google Scholar
  109. 109.
    Pohl, S.: Using access data for paper recommendations on ArXiv. org. Master Thesis. Technical University of Darmstadt (2007)Google Scholar
  110. 110.
    Pohl, S., Radlinski, F., Joachims, T.: Recommending related papers based on digital library access records. In: Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries, pp. 417–418 (2007)Google Scholar
  111. 111.
    Researchgate, T.: Researchgate recommender. http://www.researchgate.net/directory/publications/ (2011)
  112. 112.
    Rokach, L., Mitra, P., Kataria, S., Huang, W., Giles, L.: A supervised learning method for context-aware citation recommendation in a large corpus. In: Proceedings of the large-scale and distributed systems for information retrieval workshop (LSDS-IR), pp. 17–22 (2013)Google Scholar
  113. 113.
    Sarkanto: About the Sarkanto Recommender Demo. http://lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/about.jsp (2013)
  114. 114.
    Strohman, T., Croft, W.B., Jensen, D.: Recommending citations for academic papers. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 705–706 (2007)Google Scholar
  115. 115.
    Sugiyama, K., Kan, M.-Y.: Scholarly paper recommendation via user’s recent research interests. In: Proceedings of the 10th ACM/IEEE annual joint conference on Digital libraries (JCDL), pp. 29–38 (2010)Google Scholar
  116. 116.
    Thomas, D., Greenberg, A., Calarco, P.: Scholarly usage based recommendations: evaluating bX for a Consortium, Presentation. http://igelu.org/wp-content/uploads/2011/09/bx_igelu_presentation_updated_september-13.pdf (2011)
  117. 117.
    Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing digital libraries with TechLens+. In: Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries, 2004, pp. 228–236Google Scholar
  118. 118.
    Uchiyama, K., Nanba, H., Aizawa, A., Sagara, T.: OSUSUME: cross-lingual recommender system for research papers. In: Proceedings of the 2011 workshop on context-awareness in retrieval and recommendation, pp. 39–42 (2011)Google Scholar
  119. 119.
    Vellino, A.: A comparison between usage-based and citation-based methods for recommending scholarly research articles. Proc. Am. Soc. Inf. Sci. Technol. 47(1), 1–2 (2010)Google Scholar
  120. 120.
    Vellino, A., Zeber, D.: A hybrid, multi-dimensional recommender for journal articles in a scientific digital library. In: Proceedings of the 2007 IEEE/WIC/ACM international conference on Web intelligence, pp. 111–114 (2007)Google Scholar
  121. 121.
    Wang, Y., Zhai, E., Hu, J., Chen, Z.: Claper: recommend classical papers to beginners. Seventh international conference on Fuzzy systems and knowledge discovery 6, 2777–2781 (2010)Google Scholar
  122. 122.
    Watanabe, S., Ito, T., Ozono, T., Shintani, T.: A paper recommendation mechanism for the research support system papits. In: Proceedings of the international workshop on Data engineering issues in E-Commerce, pp. 71–80Google Scholar
  123. 123.
    Woodruff, A., Gossweiler, R., Pitkow, J., Chi, E.H., Card, S.K.: Enhancing a digital book with a reading recommender. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 153–160 (2000)Google Scholar
  124. 124.
    Yang, C., Wei, B., Wu, J., Zhang, Y., Zhang, L.: CARES: a ranking-oriented CADAL recommender system. In: Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries, pp. 203–212 (2009)Google Scholar
  125. 125.
    Zarrinkalam, F., Kahani, M.: SemCiR—a citation recommendation system based on a novel semantic distance measure. Program: Electron. Libr. Inf. Syst. 47(1), 92–112 (2013)Google Scholar
  126. 126.
    Zarrinkalam, F., Kahani, M.: A new metric for measuring relatedness of scientific papers based on non-textual features. Intell. Inf. Manag. 4(4), 99–107 (2012)Google Scholar
  127. 127.
    Zhou, D., Zhu, S., Yu, K., Song, X., Tseng, B.L., Zha, H., Giles, C.L.: Learning multiple graphs for document recommendations. In: Proceedings of the 17th international conference on World Wide Web, pp. 141–150 (2008)Google Scholar
  128. 128.
    Avancini, H., Candela, L., Straccia, U.: Recommenders in a personalized, collaborative digital library environment. J. Intell. Inf. Syst. 28(3), 253–283 (2007)CrossRefGoogle Scholar
  129. 129.
    Agarwal, N., Haque, E., Liu, H., Parsons, L.: A subspace clustering framework for research group collaboration. Int. J. Inf. Technol. Web Eng. 1(1), 35–58 (2006)CrossRefGoogle Scholar
  130. 130.
    Agarwal, N., Haque, E., Liu, H., Parsons, L.: Research paper recommender systems: a subspace clustering approach. In: Proceedings of the 6th international conference on Advances in Web-Age Information Management (WAIM’05), pp. 475–491 (2005)Google Scholar
  131. 131.
    Bollen, J., Rocha, L.M.: An adaptive systems approach to the implementation and evaluation of digital library recommendation systems. In: Proceedings of the 4th European conference on Digital libraries, Springer, pp. 356–359 (2000)Google Scholar
  132. 132.
    Bancu, C., Dagadita, M., Dascalu, M., Dobre, C., Trausan-Matu, S., Florea, A.M.: ARSYS-article recommender system. In: Proceedings of the 14th international symposium on Symbolic and numeric algorithms for scientific computing, pp. 349–355 (2012)Google Scholar
  133. 133.
    Cazella, S.C., Alvares, L.O.C.: Combining data mining technique and users’ relevance opinion to build an efficient recommender system. Revista Tecnologia da Informação, UCB, 4(2) (2005)Google Scholar
  134. 134.
    Cazella, S., Alvares, L.: Modeling user’s opinion relevance to recommending research papers. In: Proceedings of the UMAP Conference, pp. 150–150 (2005)Google Scholar
  135. 135.
    Chirawatkul, P.: Structured Peer-to-Peer Search to Build a Bibliographic Paper Recommendation System. Saarland University, Saarland (2006)Google Scholar
  136. 136.
    Dattolo, A., Ferrara, F., Tasso, C.: Supporting personalized user concept spaces and recommendations for a publication sharing system. In: Proceedings of the 17th international conference on User modeling, adaptation, and personalization, pp. 325–330 (2009)Google Scholar
  137. 137.
    Daud, A.: Muhammad Akramand Rajpar Shaikh, A.H.: Scientific reference mining using semantic information through topic modeling. Res. J. Eng. Technol. 28(2), 253–262 (2009)Google Scholar
  138. 138.
    Farooq, U., Ganoe, C.H., Carroll, J.M., Councill, I.G.: Lee Giles, C.: Design and evaluation of awareness mechanisms in CiteSeer. Inf. Process. Manag. 44(2), 596–612 (2008)CrossRefGoogle Scholar
  139. 139.
    Fernández, L., Sánchez, J.A., García, A.: Mibiblio: personal spaces in a digital library universe. In: Proceedings of the 5th ACM conference on Digital libraries, pp. 232–233 (2000)Google Scholar
  140. 140.
    Gross, T.: CYCLADES: a distributed system for virtual community support based on open archives. In: Proceedings of the 11th Euromicro Conference on Parallel, distributed and network-based orocessing, pp. 484–491 (2003)Google Scholar
  141. 141.
    Geisler, G., McArthur, D., Giersch, S.: Developing recommendation services for a digital library with uncertain and changing data. In: Proceedings of the 1st ACM/IEEE-CS joint conference on Digital libraries, pp. 199–200 (2001)Google Scholar
  142. 142.
    Hong, K., Jeon, H., Jeon, C.: UserProfile-based personalized research paper recommendation system. In: Proceedings of the 8th international conference on Computing and networking technology, pp. 134–138 (2012)Google Scholar
  143. 143.
    Huang, Y.: Combining Social Networks and Content for Recommendation in a Literature Digital Library. National Sun Yat-Sen University, Taiwan (2007)Google Scholar
  144. 144.
    Kang, S., Cho, Y.: A novel personalized paper search system. In: Proceedings of the international conference on Intelligent computing, pp. 1257–1262 (2006)Google Scholar
  145. 145.
    Martin, G.H., Schockaert, S., Cornelis, C., Naessens, H.: Metadata impact on research paper similarity. In: 14th European Conference on Digital libraries, pp. 457–460 (2010)Google Scholar
  146. 146.
    Morales-del-Castillo, J.M., Peis, E., Herrera-Viedma, E.: A filtering and recommender system prototype for scholarly users of digital libraries. In: Proceedings of the Second World Summit on the Knowledge Society, Springer, pp. 108–117 (2009)Google Scholar
  147. 147.
    Mao, Y., Vassileva, J., Grassmann, W.: A system dynamics approach to study virtual communities. In: Proceedings of the 40th Annual Hawaii International Conference on System Sciences, pp. 178–197 (2007)Google Scholar
  148. 148.
    Matsatsinis, N.F., Lakiotaki, K., Delia, P.: A system based on multiple criteria analysis for scientific paper recommendation. In: Proceedings of the 11th Panhellenic Conference on Informatics, pp. 135–149 (2007)Google Scholar
  149. 149.
    Mishra, G.: Optimised research paper recommender system using social tagging. Int. J. Eng. Res. Appl. 2(2), 1503–1507 (2012)Google Scholar
  150. 150.
    Nakagawa, A., Ito, T.: An implementation of a knowledge recommendation system based on similarity among users’ profiles. In: Proceedings of the 41st SICE annual conference, vol. 1, pp. 326–327 (2002)Google Scholar
  151. 151.
    Pan, C., Li, W.: Research paper recommendation with topic analysis. In: Proceedings of the international conference on Computer design and applications (ICCDA), pp. 264–268 (2010)Google Scholar
  152. 152.
    Popa, H.-E., Negru, V., Pop, D., Muscalagiu, I.: DL-AgentRecom-A multi-agent based recommendation system for scientific documents. In: Proceedings of the 10th international symposium on Symbolic and numeric algorithms for scientific computing, pp. 320–324 (2008)Google Scholar
  153. 153.
    Ratprasartporn, N., Ozsoyoglu, G.: Finding related papers in literature digital libraries. In: Proceedings of the 11th European Conference on Digital libraries, pp. 271–284 (2007)Google Scholar
  154. 154.
    Rocha, L.M.: TalkMine: a soft computing approach to adaptive knowledge recommendation. Stud. Fuzziness Soft Comput. 75, 89–116 (2001)CrossRefGoogle Scholar
  155. 155.
    Rocha, L.M.: Talkmine and the adaptive recommendation project. In: Proceedings of the fourth ACM conference on Digital libraries, pp. 242–243 (1999)Google Scholar
  156. 156.
    Stock, K., Robertson, A., Reitsma, F., Stojanovic, T., Bishr, M., Medyckyj-Scott, D., Ortmann, J.: eScience for Sea Science: a semantic scientific knowledge infrastructure for marine scientists. In: Proceedings of the 5th IEEE international conference on e-Science, pp. 110–117 (2009)Google Scholar
  157. 157.
    Straccia, U.: Cyclades: an open collaborative virtual archive environment. Poster (http://www.ercim.eu/cyclades/cyclades-fs.pdf) (2003)
  158. 158.
    Shaoping, Z.: ActiveCite: an interactive system for automatic citation suggestion. Master Thesis. National University of Singapore (2010)Google Scholar
  159. 159.
    Stock, K., Karasova, V., Robertson, A., Roger, G., Small, M., Bishr, M., Ortmann, J., Stojanovic, T., Reitsma, F., Korczynski, L., Brodaric, B., Gardner, Z.: Finding science with science: evaluating a domain and scientific ontology user interface for the discovery of scientific resources. Trans. GIS 1, 1–28 (2013)Google Scholar
  160. 160.
    Tang, T.Y., McCalla, G.: Towards pedagogy-oriented paper recommendations and adaptive annotations for a web-based learning system. In: Knowledge representation and automated reasoning for E-Learning systems, pp. 72–80 (2003)Google Scholar
  161. 161.
    Tang, J., Zhang, J.: A discriminative approach to topic-based citation recommendation. Advances in Knowledge Discovery and Data Mining, pp. 572–579 (2009)Google Scholar
  162. 162.
    Tang, T., McCalla, G.: Utilizing artificial learners to help overcome the cold-start problem in a pedagogically-oriented paper recommendation system. In: Adaptive hypermedia and adaptive web-based systems, pp. 245–254 (2004)Google Scholar
  163. 163.
    Tang, T., McCalla, G.: Beyond learners’ interest: personalized paper recommendation based on their pedagogical features for an e-learning system. In: Proceedings of the 8th Pacific Rim international conference on Artificial intelligence, Springer, pp. 301–310 (2004)Google Scholar
  164. 164.
    Tang, T.Y., McCalla, G.: Mining implicit ratings for focused collaborative filtering for paper recommendations. In: Proceedings of the workshop on User and group models for web-based adaptive collaborative environments (2003)Google Scholar
  165. 165.
    Tang, T.Y., McCalla, G.: Smart recommendation for an evolving e-learning system. In: Proceedings of the workshop on Technologies for electronic documents for supporting learning, at the international conference on Artificial intelligence in education, pp. 699–710 (2003)Google Scholar
  166. 166.
    Tang, T.Y.: The design and study of pedagogical paper recommendation. PhD Thesis. University of Saskatchewan (2008)Google Scholar
  167. 167.
    Tang, T.Y., McCalla, G.: A multidimensional paper recommender: experiments and evaluations. Internet Comput. IEEE 13(4), 34–41 (2009)Google Scholar
  168. 168.
    Tang, T.Y., McCalla, G.: The pedagogical value of papers: a collaborative-filtering based paper recommender. J. Digit. Inf. 10(2), 1–12 (2009)Google Scholar
  169. 169.
    Tang, T.Y., McCalla, G.: On the pedagogically guided paper recommendation for an evolving web-based learning system. In: Proceedings of the FLAIRS Conference, pp. 86–91 (2004)Google Scholar
  170. 170.
    Tang, T.Y., McCalla, G.: The social affordance of a paper. In: Proceedings of the workshop of assessment of group and individual learning through intelligent visualization on the 13th international conference on Artificial intelligence in education, pp. 34–42 (2007)Google Scholar
  171. 171.
    Tang, X., Zeng, Q.: Keyword clustering for user interest profiling refinement within paper recommender systems. J. Syst. Softw. 85(1), 87–101 (2012)CrossRefGoogle Scholar
  172. 172.
    Vassileva, J.: Harnessing p2p power in the classroom. In: Proceedings of the conference on Intelligent tutoring systems, pp. 305–314 (2004)Google Scholar
  173. 173.
    Vassileva, J.: Supporting peer-to-peer user communities. In: Proceedings of the conference on the move to meaningful internet systems, pp. 230–247 (2002)Google Scholar
  174. 174.
    Vassileva, J., Detters, R., Geer, J., Maccalla, G., Bull, S., Kettel, L.: Lessons from deploying I-Help. In: Workshop on Multi-agent architectures for distributed learning environments. In: Proceedings of international conference on AI and Education, San Antonio, TX, pp. 3–11 (2001)Google Scholar
  175. 175.
    Vivacqua, A.S., Oliveira, J., de Souza, J.M.: i-ProSE: inferring user profiles in a scientific context. Comput. J. 52(7), 789–798 (2009)CrossRefGoogle Scholar
  176. 176.
    Weng, S.-S., Chang, H.-L.: Using ontology network analysis for research document recommendation. Expert Syst. Appl. 34(3), 1857–1869 (2008)CrossRefGoogle Scholar
  177. 177.
    Winoto, P., Tang, T.Y., McCalla, G.I.: Contexts in a paper recommendation system with collaborative filtering. Int. Rev. Res. Open Distance Learn. 13(5), 56–75 (2012)Google Scholar
  178. 178.
    Wu, H., Hua, Y., Li, B., Pei, Y.: Enhancing citation recommendation with various evidences. In: Proceedings of the 9th international conference on Fuzzy systems and knowledge discovery (FSKD), pp. 1160–1165 (2012)Google Scholar
  179. 179.
    Xia, H., Li, J., Tang, J., Moens, M.-F.: Plink-LDA: using link as prior information in topic modeling. In: Proceedings of the conference on Database systems for advanced applications (DASFAA), pp. 213–227 (2012)Google Scholar
  180. 180.
    Yang, Q., Zhang, S., Feng, B.: Research on personalized recommendation system of scientific and technological periodical based on automatic summarization. In: Proceedings of the 1st international symposium on Information technologies and applications in education, pp. 34–39 (2007)Google Scholar
  181. 181.
    Yang, S.-Y., Hsu, C.-L.: A new ontology-supported and hybrid recommending information system for scholars. In: Proceedings of the 13th international conference on Network-based information systems (NBiS), pp. 379–384 (2010)Google Scholar
  182. 182.
    Yin, P., Zhang, M., Li, X.: Recommending scientific literatures in a collaborative tagging environment. In: Proceedings of the 10th international conference on Asian digital libraries, Springer, pp. 478–481 (2007)Google Scholar
  183. 183.
    Zarrinkalam, F., Kahani, M.: A multi-criteria hybrid citation recommendation system based on linked data. In: Proceedings of the 2nd international eConference on Computer and knowledge engineering, pp. 283–288 (2012)Google Scholar
  184. 184.
    Zhang, M., Wang, W., Li, X.: A paper recommender for scientific literatures based on semantic concept similarity. In: Proceedings of the international conference on Asian Digital Libraries, pp. 359–362 (2008)Google Scholar
  185. 185.
    Zhang, Z., Li, L.: A research paper recommender system based on spreading activation model. In: Proceedings of the 2nd international conference on Information Science and Engineering (ICISE), pp. 928–931 (2010)Google Scholar
  186. 186.
    Gottwald, S., Koch, T.: Recommender systems for libraries. In: Proceedings of the ACM international conference on Recommender systems, pp. 1–5 (2011)Google Scholar
  187. 187.
    Leong, S.: A survey of recommender systems for scientific papers. Presentation. http://www.liquidpub.org/mediawiki/upload/f/ff/RecommenderSystems.pdf (2012)
  188. 188.
    Smeaton, A.F., Callan, J.: Personalisation and recommender systems in digital libraries. Int. J. Digit. Libr. 5(4), 299–308 (2005)CrossRefGoogle Scholar
  189. 189.
    Alotaibi, S., Vassileva, J.: Trust-based recommendations for scientific papers based on the researcher’s current interest. In: Artificial Intelligence in Education, pp. 717–720 (2013)Google Scholar
  190. 190.
    Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., Nürnberger, A.: Research paper recommender system evaluation: a quantitative literature survey. In: Proceedings of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys) at the ACM Recommender System Conference (RecSys), pp. 15–22 (2013)Google Scholar
  191. 191.
    Beel, J., Langer, S., Genzmehr, M., Gipp, B., Nürnberger, A.: A comparative analysis of offline and online evaluations and discussion of research paper recommender system evaluation. In: Proceedings of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys) at the ACM Recommender System Conference (RecSys), pp. 7–14 (2013)Google Scholar
  192. 192.
    Chen, C., Mao, C., Tang, Y., Chen, G., Zheng, J.: Personalized recommendation based on implicit social network of researchers. In: Joint international conference, ICPCA/SWS, pp. 97–107 (2013)Google Scholar
  193. 193.
    De Nart, D., Ferrara, F., Tasso, C.: Personalized access to scientific publications: from recommendation to explanation. In: Proceedings of the international conference on User modeling, adaptation, and personalization, pp. 296–301 (2013)Google Scholar
  194. 194.
    De Nart, D., Ferrara, F., Tasso, C.: RES: a personalized filtering tool for CiteSeerX queries based on keyphrase extraction. In: Proceedings of the international conference on User modeling, adaptation, and personalization (UMAP), pp. 341–343 (2013)Google Scholar
  195. 195.
    Franke, M., Geyer-Schulz, A., Neumann, A.: Building recommendations from random walks on library opac usage data. In: Data Analysis, Classification and the Forward Search, Springer, pp. 235–246 (2006)Google Scholar
  196. 196.
    Kim, S.: iScholar: a mobile research support system. PhD Thesis. University of Regina (2013)Google Scholar
  197. 197.
    Küçüktunç, O.: Result Diversication on Spatial, Multidimensional, Opinion, and Bibliographic Data. Ohio State University, Columbus (2013)Google Scholar
  198. 198.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü. V.: TheAdvisor: a webservice for academic recommendation. In: Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries, pp. 433–434 (2013)Google Scholar
  199. 199.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü. V.: Towards a personalized, scalable, and exploratory academic recommendation service. In: Proceedings of the 2013 IEEE/ACM international conference on Advances in social networks analysis and mining, pp. 636–641 (2013)Google Scholar
  200. 200.
    Lai, Y., Zeng, J.: A cross-language personalized recommendation model in digital libraries. Electron. Libr. 31(3), 164–277 (2013)MathSciNetCrossRefGoogle Scholar
  201. 201.
    Li, Y., Yang, M., Zhang, Z.M.: Scientific articles recommendation. In: Proceedings of the 22nd ACM International conference on information and knowledge management, pp. 1147–1156 (2013)Google Scholar
  202. 202.
    Lee, J., Lee, K., Kim, J.G.: Personalized academic research paper recommendation system. ArXiv Preprint, vol. arXiv:1304.5457. pp. 1–8 (2013)
  203. 203.
    Manouselis, N., Verbert, K.: Layered evaluation of multi-criteria collaborative filtering for scientific paper recommendation. Procedia Comput. Sci. 18, 1189–1197 (2013)CrossRefGoogle Scholar
  204. 204.
    Meng, F., Gao, D., Li, W., Sun, X., Hou, Y.: A unified graph model for personalized query-oriented reference paper recommendation. In: Proceedings of the 22nd ACM international conference on Conference on information and knowledge management, pp. 1509–1512 (2013)Google Scholar
  205. 205.
    Pera, M.S., Ng, Y.-K.: Exploiting the wisdom of social connections to make personalized recommendations on scholarly articles. J. Intell. Inf. Syst. 42(3), 371–391 (2014)CrossRefGoogle Scholar
  206. 206.
    Pera, M.S., Ng, Y.-K.: Exploiting the wisdom of social connections to make personalized recommendations on scholarly articles. J. Intell. Inf. Syst. 42(3), 371–391 (2014)CrossRefGoogle Scholar
  207. 207.
    Sugiyama, K., Kan, M.-Y.: Exploiting potential citation papers in scholarly paper recommendation. In: Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries, pp. 153–162 (2013)Google Scholar
  208. 208.
    Sun, J., Ma, J., Liu, X., Liu, Z., Wang, G., Jiang, H., Silva, T.: A novel approach for personalized article recommendation in online scientific communities. In: Proceedings of the 46th Hawaii international conference on System sciences (HICSS) (2013)Google Scholar
  209. 209.
    Sun, J., Ma, J., Liu, Z., Miao, Y.: Leveraging content and connections for scientific article recommendation. Comput. J. 60–71 (2013)Google Scholar
  210. 210.
    Tian, G., Jing, L.: Recommending scientific articles using bi-relational graph-based iterative RWR. In: Proceedings of the 7th ACM conference on Recommender systems, pp. 399–402 (2013)Google Scholar
  211. 211.
    Vellino, A.: Usage-based vs. citation-based methods for recommending scholarly research articles. Arxiv, vol. arXiv:1303.7149 (2013)
  212. 212.
    Yan, R., Yan, H. et al.: Guess what you will cite: personalized citation recommendation based on users’s preference. In: Proceedings of the annual I&R training and education conference, pp. 428–439 (2013)Google Scholar
  213. 213.
    Yang, W.-S., Lin, Y.-R.: A task-focused literature recommender system for digital libraries. Online Inf. Rev. 37(4), 581–601 (2013)Google Scholar
  214. 214.
    Yao, W., He, J., Huang, G., Cao, J., Zhang, Y.: Personalized recommendation on multi-layer context graph. In: Web Information Systems Engineering (WISE 2013), pp. 135–148 (2013)Google Scholar
  215. 215.
    Yu, L., Yang, J., Yang, D., Yang, X.: A decision support system for finding research topic based on paper recommendation. In: Proceedings of the Pacific Asia conference on Information systems (2013)Google Scholar
  216. 216.
    Zarrinkalam, F., Kahani, M.: Using semantic relations to improve quality of a citation recommendation system. Soft Comput. J. 1(2), 36–45 (2013)Google Scholar
  217. 217.
    Zhang, Z.P., Li, L.N., Yu, H.Y.: A hybrid document recommender algorithm based on random walk. Appl. Mech. Mater. 2270, 336–338 (2013)CrossRefGoogle Scholar
  218. 218.
    Beel, J., Gipp, B.: Academic search engine spam and Google Scholar’s resilience against it. J. Electron. Publ. 13(3) (2010)Google Scholar
  219. 219.
    Bar-Ilan, J.: Which h-index?—A comparison of WoS. Scopus Google Scholar Scientometr. 74(2), 257–271 (2007)MathSciNetGoogle Scholar
  220. 220.
    Noruzi, A.: Google Scholar: the new generation of citation indexes. Libri 55(4), 170–180 (2005)CrossRefGoogle Scholar
  221. 221.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175–186 (1994)Google Scholar
  222. 222.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the National Conference on Artificial Intelligence, pp. 187–192 (2002)Google Scholar
  223. 223.
    Shi, Y., Larson, M., Hanjalic, A.: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput. Surv. 47(1), 3:1–3:45 (2014)Google Scholar
  224. 224.
    Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)MathSciNetMATHGoogle Scholar
  225. 225.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  226. 226.
    Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the 4th ACM conference on Recommender systems, pp. 257–260 (2010)Google Scholar
  227. 227.
    Ritchie, A., Teufel, S., Robertson, S.: Using terms from citations for IR: some first results. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) Advances in Information Retrieval, pp. 211–221. Springer (2008)Google Scholar
  228. 228.
    Ritchie, A., Teufel, S., Robertson, S.: Using terms from citations for IR: some first results. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) Advances in Information Retrieval, pp. 211–221. Springer (2008)Google Scholar
  229. 229.
    Ritchie, A.: Citation context analysis for information retrieval. PhD Thesis. University of Cambridge (2008)Google Scholar
  230. 230.
    Dumais, S.T., Nielsen, J.: Automating the assignment of submitted manuscripts to reviewers. In: Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 233–244 (1992)Google Scholar
  231. 231.
    Wang, F., Shi, N., Chen, B.: A comprehensive survey of the reviewer assignment problem. Int. J. Inf. Technol. Decis. Mak. 9(04), 645–668 (2010)CrossRefMATHGoogle Scholar
  232. 232.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. U. S. Am. 102(46), 16569 (2005)CrossRefGoogle Scholar
  233. 233.
    Small, H.: Co-citation in the scientific literature: a new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 24, 265–269 (1973)CrossRefGoogle Scholar
  234. 234.
    Kessler, M.M.: Bibliographic coupling between scientific papers. Am. Documentation 14, 10–25 (1963)CrossRefGoogle Scholar
  235. 235.
    Zyczkowski, K.: Citation graph, weighted impact factors and performance indices. Scientometrics 85(1), 301–315 (2010)CrossRefGoogle Scholar
  236. 236.
    Fischer, G.: User modeling in human–computer interaction. User Model. User-Adapt. Interact. 11(1), 65–86 (2001)CrossRefMATHGoogle Scholar
  237. 237.
    Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Technol. (TOIT) 3(1), 1–27 (2003)CrossRefGoogle Scholar
  238. 238.
    Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.D.: Web usage mining as a tool for personalization: a survey. User Model. User-Adapt. Interact. 13(4), 311–372 (2003)CrossRefGoogle Scholar
  239. 239.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM conference on Digital libraries, pp. 195–204 (2000)Google Scholar
  240. 240.
    Brusilovsky, P., Farzan, R., Ahn, J.: Comprehensive personalized information access in an educational digital library. In: Digital Libraries, 2005. JCDL’05. In: Proceedings of the 5th ACM/IEEE-CS joint conference on, pp. 9–18 (2005)Google Scholar
  241. 241.
    Faensen, D., Faultstich, L., Schweppe, H., Hinze, A., Steidinger, A.: Hermes: a notification service for digital libraries. In: Proceedings of the 1st ACM/IEEE-CS joint conference on Digital libraries, pp. 373–380 (2001)Google Scholar
  242. 242.
    Das, S., Mitra, P., Giles, C.L.: Similar researcher search’. In: Academic Environments. In: Proceedings of the JCDL’12, pp. 167–170 (2012)Google Scholar
  243. 243.
    Abu-Jbara, A., Radev, D.: Coherent citation-based summarization of scientific papers. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 500–509 (2011)Google Scholar
  244. 244.
    Mohammad, S., Dorr, B., Egan, M., Hassan, A., Muthukrishan, P., Qazvinian, V., Radev, D., Zajic, D.: Using citations to generate surveys of scientific paradigms. In: Proceedings of human language technologies: the 2009 annual conference of the North American Chapter of the Association for Computational Linguistics, 2009, pp. 584–592Google Scholar
  245. 245.
    Teufel, S., Moens, M.: Summarizing scientific articles: experiments with relevance and rhetorical status. Comput. Linguist. 28(4), 409–445 (2002)CrossRefGoogle Scholar
  246. 246.
    Collins, L.M., Mane, K.K., Martinez, M.L., Hussell, J.A., Luce, R.E.: ScienceSifter: facilitating activity awareness in collaborative research groups through focused information feeds. In: 1st international conference on e-Science and grid computing, pp. 40–47 (2005)Google Scholar
  247. 247.
    Klamma, R., Cuong, P.M., Cao, Y.: You never walk alone: recommending academic events based on social network analysis. In: Zhou, J. (ed.) Complex Sciences, pp. 657–670. Springer (2009)Google Scholar
  248. 248.
    Klamma, R., Cuong, P.M., Cao, Y.: You never walk alone: recommending academic events based on social network analysis. In: Zhou, J. (ed.) Complex Sciences, pp. 657–670. Springer (2009)Google Scholar
  249. 249.
    Yang, Z., Davison, B. D.: Venue recommendation: submitting your paper with style. In: Machine learning and applications (ICMLA), 2012 11th international conference on, vol. 1, pp. 681–686 (2012)Google Scholar
  250. 250.
    Oh, S., Lei, Z., Lee, W.-C., Mitra, P., Yen, J.: CV-PCR: a context-guided value-driven framework for patent citation recommendation. In: Proceedings of the 22nd ACM international conference on Conference on information and knowledge management, pp. 2291–2296 (2013)Google Scholar
  251. 251.
    Singhal, A., Kasturi, R., Sivakumar, V., Srivastava, J.: Leveraging web intelligence for finding interesting research datasets. In: Web intelligence (WI) and intelligent agent technologies (IAT), 2013 IEEE/WIC/ACM international joint conferences on, vol. 1, pp. 321–328 (2013)Google Scholar
  252. 252.
    Gipp, B., Beel, J.: Citation based plagiarism detection–a new approach to identify plagiarized work language independently. In: Proceedings of the 21st ACM conference on Hypertext and hypermedia, pp. 273–274 (2010)Google Scholar
  253. 253.
    Zhan, S., Byung-Ryul, A., Ki-Yol, E., Min-Koo, K., Jin-Pyung, K., Moon-Kyun, K. (2008) Plagiarism detection using the Levenshtein distance and Smith-Waterman algorithm. In: Proceedings of the 3rd international conference on Innovative computing information and control, pp. 569–569Google Scholar
  254. 254.
    Zini, M., Fabbri, M., Moneglia, M., Panunzi, A.: Plagiarism detection through multilevel text comparison. In: Proceedings of the 2nd conference on Automated production of cross media content for multi-channel distribution, pp. 181–185 (2006)Google Scholar
  255. 255.
    Ley, M., Reuther, P.: Maintaining an online bibliographical database: the problem of data quality, EGC’2006, Actes des sixièmes journées Extraction et Gestion des Connaissances, pp. 17–20 (2006)Google Scholar
  256. 256.
    Beel, J., Langer, S., Genzmehr, M., Müller, C.: Docears PDF inspector: title extraction from PDF files. In: Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries (JCDL’13), pp. 443–444 (2013)Google Scholar
  257. 257.
    Beel, J., Gipp, B., Shaker, A., Friedrich, N.: SciPlore Xtract: extracting titles from scientific PDF documents by analyzing style information (Font Size). In: Research and Advanced Technology for Digital Libraries. Proceedings of the 14th European conference on Digital libraries (ECDL’10), vol. 6273, pp. 413–416 (2010)Google Scholar
  258. 258.
    Han, H., Giles, C.L., Manavoglu, E., Zha, H., Zhang, Z., Fox, E.A.: Automatic document metadata extraction using support vector machines. In: Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital libraries, pp. 37–48 (2003)Google Scholar
  259. 259.
    Hu, Y., Li, H., Cao, Y., Teng, L., Meyerzon, D., Zheng, Q.: Automatic extraction of titles from general documents using machine learning. Inf. Process. Manag. 42(5), 1276–1293 (2006)CrossRefGoogle Scholar
  260. 260.
    Peng, F., McCallum, A.: Information extraction from research papers using conditional random fields. Inf. Process. Manag. 42(4), 963–979 (2006)CrossRefGoogle Scholar
  261. 261.
    Lawrence, S., Giles, C.L., Bollacker, K.D.: Autonomous citation matching. In: Proceedings of the 3rd annual conference on Autonomous agents, pp. 392–393 (1999)Google Scholar
  262. 262.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds): Recommender Systems Handbook, pp. 1–35. Springer, Berlin (2011)Google Scholar
  263. 263.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds): Recommender Systems Handbook, pp. 1–35. Springer, Berlin (2011)Google Scholar
  264. 264.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. Lect. Notes Comput. Sci. 4321, 291 (2007)CrossRefGoogle Scholar
  265. 265.
    Rossi, P.H., Lipsey, M.W., Freeman, H.E.: Evaluation: A Aystematic Approach, 7th edn. Sage publications, Thousand Oaks (2004)Google Scholar
  266. 266.
    Gorrell, G., Ford, N., Madden, A., Holdridge, P., Eaglestone, B.: Countering method bias in questionnaire-based user studies. J. Documentation 67(3), 507–524 (2011)CrossRefGoogle Scholar
  267. 267.
    Leroy, G.: Designing User Studies in Informatics. Springer, Berlin (2011)CrossRefGoogle Scholar
  268. 268.
    Said, A., Tikk, D., Shi, Y., Larson, M., Stumpf, K., Cremonesi, P.: Recommender systems evaluation: a 3d benchmark. In: ACM RecSys 2012 workshop on Recommendation utility evaluation: beyond RMSE, Dublin, Ireland, pp. 21–23 (2012)Google Scholar
  269. 269.
    Cremonesi, P., Garzotto, F., Turrin, R.: Investigating the persuasion potential of recommender systems from a quality perspective: an empirical study. ACM Trans. Interact. Intell. Syst. (TiiS) 2(2), 11 (2012)Google Scholar
  270. 270.
    Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A.V., Turrin, R.: Looking for ‘good’ recommendations: a comparative evaluation of recommender systems. In: Human–computer interaction-INTERACT 2011, Springer, pp. 152–168 (2011)Google Scholar
  271. 271.
    Burns, C.A., Bush, F.R.: Marketing Research, 7th edn. Prentice Hall, Upper Saddle River (2013)Google Scholar
  272. 272.
    Loeppky, J.L., Sacks, J., Welch, W.J.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4), 366–376 (2009)MathSciNetCrossRefGoogle Scholar
  273. 273.
    Zheng, H., Wang, D., Zhang, Q., Li, H., Yang, T.: Do clicks measure recommendation relevancy?: an empirical user study. In: Proceedings of the 4th ACM conference on Recommender systems, pp. 249–252 (2010)Google Scholar
  274. 274.
    Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adapt. Interact. 22(1–2), 101–123 (2012)CrossRefGoogle Scholar
  275. 275.
    Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adapt. Interact. 22(1–2), 101–123 (2012)Google Scholar
  276. 276.
    Matejka, J., Li, W., Grossman, T., Fitzmaurice, G.: CommunityCommands: command recommendations for software applications. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology, pp. 193–202 (2009)Google Scholar
  277. 277.
    Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: Proceedings of the 7th international conference on Intelligent user interfaces, pp. 127–134 (2002)Google Scholar
  278. 278.
    Hersh, W., Turpin, A., Price, S., Chan, B., Kramer, D., Sacherek, L., Olson, D.: Do batch and user evaluations give the same results? In: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 17–24 (2000)Google Scholar
  279. 279.
    Hersh, W.R., Turpin, A., Sacherek, L., Olson, D., Price, S., Chan, B., Kraemer, D.: Further Analysis of whether batch and user evaluations give the same results with a question-answering task. In: Proceedings of the 9th Text REtrieval Conference (TREC 9) (2000)Google Scholar
  280. 280.
    Said, A.: Evaluating the accuracy and utility of recommender systems. PhD Thesis. Technische Universität Berlin (2013)Google Scholar
  281. 281.
    Turpin, A.H., Hersh, W.: Why batch and user evaluations do not give the same results. In: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 225–231 (2001)Google Scholar
  282. 282.
    Jannach, D., Lerche, L., Gedikli, F., Bonnin, G.: What recommenders recommend—an analysis of accuracy, popularity, and sales diversity effects. In: User Modeling, Adaptation, and Personalization, Springer, pp. 25–37 (2013)Google Scholar
  283. 283.
    Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 22(4–5), 441–504 (2012)CrossRefGoogle Scholar
  284. 284.
    Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems–a landscape of research. In: Proceedings of the 13th international conference, EC-Web, pp. 76–87 (2012)Google Scholar
  285. 285.
    Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the National Conference on Artificial Intelligence, pp. 439–446 (1999)Google Scholar
  286. 286.
    Palopoli, L., Rosaci, D., Sarné, G.M.: A multi-tiered recommender system architecture for supporting E-Commerce. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI, pp. 71–81. Springer (2013)Google Scholar
  287. 287.
    Palopoli, L., Rosaci, D., Sarné, G.M.: A multi-tiered recommender system architecture for supporting E-Commerce. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI, pp. 71–81. Springer (2013)Google Scholar
  288. 288.
    Lee, Y.-L., Huang, F.-H.: Recommender system architecture for adaptive green marketing. Expert Syst. Appl. 38(8), 9696–9703 (2011)CrossRefGoogle Scholar
  289. 289.
    Prieto, M.E., Menéndez, V.H., Segura, A.A., Vidal, C.L.: A recommender system architecture for instructional engineering. In: Emerging Technologies and Information Systems for the Knowledge Society, Springer, pp. 314–321 (2008)Google Scholar
  290. 290.
    Bhatia, S., Caragea, C., Chen, H.-H., Wu, J., Treeratpituk, P., Wu, Z., Khabsa, M., Mitra, P., Giles, C.L.: Specialized research datasets in the CiteSeerx digital library. D-Lib Mag. 18(7/8) (2012)Google Scholar
  291. 291.
    Jack, K., Hristakeva, M., de Zuniga, R.G., Granitzer, M.: Mendeley’s open data for science and learning: a reply to the dataTEL challenge. Int. J. Technol. Enhanc. Learn. 4(1/2), 31–46 (2012)CrossRefGoogle Scholar
  292. 292.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. Microsoft Research, MSR-TR-98-12 (1998)Google Scholar
  293. 293.
    Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the 10th international conference on Information and knowledge management, pp. 247–254 (2001)Google Scholar
  294. 294.
    Casadevall, A., Fang, F.C.: Reproducible science. Infect. Immun. 78(12), 4972–4975 (2010)CrossRefGoogle Scholar
  295. 295.
    Rehman, J.: Cancer research in crisis: are the drugs we count on based on bad science? http://www.salon.com/2013/09/01/is_cancer_research_facing_a_crisis/ (2013)
  296. 296.
    Drummond, C.: Replicability is not reproducibility: nor is it good science. In: Proceedings of the evaluation methods for MachineLearning Workshop at the 26th ICML (2009)Google Scholar
  297. 297.
    Al-Maskari, A., Sanderson, M., Clough, P.: The relationship between IR effectiveness measures and user satisfaction. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 773–774 (2007)Google Scholar
  298. 298.
    Knijnenburg, B.P., Willemsen, M.C., Kobsa, A.: A pragmatic procedure to support the user-centric evaluation of recommender systems. In: Proceedings of the 5th ACM conference on Recommender systems, pp. 321–324 (2011)Google Scholar
  299. 299.
    Pu, P., Chen, L., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User-Adapt. Interact. 22(4–5), 317–355 (2012)CrossRefGoogle Scholar
  300. 300.
    Pu, P., Chen, L., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User-Adapt. Interact. 22(4–5), 317–355 (2012)CrossRefGoogle Scholar
  301. 301.
    Ekstrand, M.D., Ludwig, M., Konstan, J.A., Riedl, J.T.: Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit. In: Proceedings of the 5th ACM conference on Recommender systems, pp. 133–140 (2011)Google Scholar
  302. 302.
    Konstan, J.A., Adomavicius, G.: Toward identification and adoption of best practices in algorithmic recommender systems research. In: Proceedings of the international workshop on Reproducibility and replication in recommender systems evaluation, pp. 23–28 (2013)Google Scholar
  303. 303.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  304. 304.
    Perugini, S., Gonçalves, M.A., Fox, E.A.: Recommender systems research: a connection-centric survey. J. Intell. Inf. Syst. 23(2), 107–143 (2004)CrossRefMATHGoogle Scholar
  305. 305.
    Torre, I.: Adaptive systems in the era of the semantic and social web, a survey. User Model. User-Adapt. Interact. 19(5), 433–486 (2009)CrossRefGoogle Scholar
  306. 306.
    Zanker, M., Jessenitschnig, M., Jannach, D., Gordea, S.: Comparing recommendation strategies in a commercial context. IEEE Intell. Syst. 22(3), 69–73 (2007)CrossRefGoogle Scholar
  307. 307.
    Rich, E.: User modeling via stereotypes. Cogn. Sci. 3(4), 329–354 (1979)CrossRefGoogle Scholar
  308. 308.
    Barla, M.: Towards social-based user modeling and personalization. Inf. Sci. Technol. Bull. ACM Slovakia 3, 52–60 (2011)Google Scholar
  309. 309.
    Weber, I., Castillo, C.: The demographics of web search. In: Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, pp. 523–530 (2010)Google Scholar
  310. 310.
    Mattioli, D.: On Orbitz, Mac users steered to pricier hotels. Wall Str. J. vol. http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882 (2012)
  311. 311.
    Beel, J.: Towards effective research-paper recommender systems and user modeling based on mind maps. PhD Thesis. Otto-von-Guericke Universität Magdeburg (2015)Google Scholar
  312. 312.
    Beel, J., Langer, S., Kapitsaki, G.M., Breitinger, C., Gipp, B.: Exploring the potential of user modeling based on mind maps. In: Proceedings of the 23rd conference on User modelling, adaptation and personalization (UMAP) (to appear) (2015)Google Scholar
  313. 313.
    Beel, J., Gipp, B., Wilde, E.: Academic search engine optimization (ASEO): optimizing scholarly literature for Google Scholar and Co. J. Sch. Publ. 41(2), 176–190 (2010)Google Scholar
  314. 314.
    Paik, W., Yilmazel, S., Brown, E., Poulin, M., Dubon, S., Amice, C.: Applying natural language processing (nlp) based metadata extraction to automatically acquire user preferences. In: Proceedings of the 1st international conference on Knowledge capture, pp. 116–122 (2001)Google Scholar
  315. 315.
    Seroussi, Y.: Utilising user texts to improve recommendations. In: De Bra, P., Kobsa, A., Chin, D. (eds.) User Modeling, Adaptation, and Personalization, pp. 403–406. Springer, Berlin (2010)Google Scholar
  316. 316.
    Seroussi, Y., Zukerman, I., Bohnert, F.: Collaborative inference of sentiments from texts. In: De Bra, P., Kobsa, A., Chin, D. (eds.) User Modeling, Adaptation, and Personalization, pp. 195–206. Springer, Berlin (2010)Google Scholar
  317. 317.
    Seroussi, Y., Zukerman, I., Bohnert, F.: Collaborative inference of sentiments from texts. In: De Bra, P., Kobsa, A., Chin, D. (eds.) User Modeling, Adaptation, and Personalization, pp. 195–206. Springer, Berlin (2010)Google Scholar
  318. 318.
    Esposito, F., Ferilli, S., Basile, T.M.A., Mauro, N.D.: Machine learning for digital document processing: from layout analysis to metadata extraction. Stud. Comput. Intell. (SCI) 90, 105–138 (2008)Google Scholar
  319. 319.
    Shin, C.K., Doermann, D.: Classification of document page images based on visual similarity of layout structures. In: Proceedings of the SPIE document recognition and retrieval VII, pp. 182–190 (2000)Google Scholar
  320. 320.
    Buttler, D.: A short survey of document structure similarity algorithms. In: Proceedings of the 5th international conference on Internet computing (2004)Google Scholar
  321. 321.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  322. 322.
    McBryan, O.A.: GENVL and WWWW: tools for taming the Web. In: Proceedings of the 1st international World Wide Web conference, vol. 341 (1994)Google Scholar
  323. 323.
    Shi, S., Xing, F., Zhu, M., Nie, Z., Wen, J.-R.: Anchor text extraction for academic search. In: Proceedings of the 2009 workshop on Text and citation analysis for scholarly digital libraries (ACL-IJCNLP 2009), pp. 10–18 (2009)Google Scholar
  324. 324.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval, Online edn. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  325. 325.
    Councill, I.G., Giles, C.L., Kan, M.Y.: ParsCit: an open-source CRF reference string parsing package. Proc. LREC 2008, 661–667 (2008)Google Scholar
  326. 326.
    Marinai, S.: Metadata extraction from PDF papers for digital library ingest. 10th international conference on Document analysis and recognition (2009)Google Scholar
  327. 327.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information Tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  328. 328.
    Brooks, T.A.: Private acts and public objects: an investigation of citer motivations. J. Am. Soc. Inf. Sci. 36(4), 223–229 (1985)Google Scholar
  329. 329.
    Liu, M.: Progress in documentation the complexities of citation practice: a review of citation studies. J. Documentation 49(4), 370–408 (1993)CrossRefGoogle Scholar
  330. 330.
    MacRoberts, M.H., MacRoberts, B.: Problems of citation analysis. Scientometrics 36, 435–444 (1996)CrossRefGoogle Scholar
  331. 331.
    Sosnovsky, S., Dicheva, D.: Ontological technologies for user modeling. Int. J. Metadata Semant. Ontol. 5(1), 32–71 (2010)CrossRefGoogle Scholar
  332. 332.
    Sundar, S.S., Oeldorf-Hirsch, A., Xu, Q.: The bandwagon effect of collaborative filtering technology. In: CHI’08 extended abstracts on Human factors in computing systems, pp. 3453–3458 (2008)Google Scholar
  333. 333.
    Mehta, B., Hofmann, T., Fankhauser, P.: Lies and propaganda: detecting spam users in collaborative filtering. In: Proceedings of the 12th international conference on Intelligent user interfaces, pp. 14–21 (2007)Google Scholar
  334. 334.
    Mehta, B., Hofmann, T., Nejdl, W.: Robust collaborative filtering. In: Proceedings of the 2007 ACM conference on Recommender systems, pp. 49–56 (2007)Google Scholar
  335. 335.
    Mehta, B., Nejdl, W.: Attack resistant collaborative filtering. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 75–82 (2008)Google Scholar
  336. 336.
    Sugiyama, K., Kan, M.Y.: Serendipitous recommendation for scholarly papers considering relations among researchers. In: Proceeding of the 11th annual international ACM/IEEE joint conference on Digital libraries, pp. 307–310 (2011)Google Scholar
  337. 337.
    Burke, R.: Hybrid web recommender systems. The adaptive web, pp. 377–408 (2007)Google Scholar
  338. 338.
    Ahlgren, P., Colliander, C.: Document-document similarity approaches and science mapping: experimental comparison of five approaches. J. Informetr. 3(1), 49–63 (2009)CrossRefGoogle Scholar
  339. 339.
    Hammouda, K.M., Kamel, M.S.: Phrase-based document similarity based on an index graph model. In: Data mining, 2002. ICDM 2003. Proceedings. 2002 IEEE international conference on, pp. 203–210 (2002)Google Scholar
  340. 340.
    Lee, M.D., Pincombe, B., Welsh, M.: An empirical evaluation of models of text document similarity. In: Proceedings of the 27th annual conference of the Cognitive Science Society, pp. 1254–1259 (2005)Google Scholar
  341. 341.
    Tsymbal, A.: The Problem of Concept Drift: Definitions and Related Work. Computer Science Department, Trinity College, Dublin (2004)Google Scholar
  342. 342.
    Victor, P., De Cock, M., Cornelis, C.: Trust and recommendations. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. B. (eds.) Recommender Systems Handbook, pp. 645–675. Springer (2011)Google Scholar
  343. 343.
    Verbert, K., Parra, D., Brusilovsky, P., Duval, E.: Visualizing recommendations to support exploration, transparency and controllability. In: Proceedings of the 2013 international conference on Intelligent user interfaces, pp. 351–362 (2013)Google Scholar
  344. 344.
    Lam, S., Frankowski, D., Riedl, J.: Do you trust your recommendations? An exploration of security and privacy issues in recommender systems. Emerging Trends in Information and Communication Security, pp. 14–29 (2006)Google Scholar
  345. 345.
    Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th international conference on World Wide Web, pp. 22–32 (2005)Google Scholar
  346. 346.
    Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 367–386. Springer (2011)Google Scholar
  347. 347.
    Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 81–88 (2002)Google Scholar
  348. 348.
    Pizzato, L., Rej, T., Yacef, K., Koprinska, I., Kay, J.: Finding someone you will like and who won’t reject you In: A. Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) User Modeling, Adaption and Personalization, pp. 269–280. Springer, Berlin (2011)Google Scholar
  349. 349.
    Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing? How recommender system interfaces affect users’ opinions. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 585–592 (2003)Google Scholar
  350. 350.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM conference on Computer supported cooperative work, pp. 241–250 (2000)Google Scholar
  351. 351.
    Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. User Model. User-Adapt. Interact. 21(3), 285–331 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joeran Beel
    • 1
  • Bela Gipp
    • 2
  • Stefan Langer
    • 3
  • Corinna Breitinger
    • 4
  1. 1.DocearMagdeburgGermany
  2. 2.University of KonstanzKonstanzGermany
  3. 3.Otto-von-Guericke UniversityMagdeburgGermany
  4. 4.Linnaeus UniversityKalmarSweden

Personalised recommendations