Advertisement

What lies beneath?: Knowledge infrastructures in the subseafloor biosphere and beyond

  • Peter T. Darch
  • Christine L. Borgman
  • Sharon Traweek
  • Rebekah L. Cummings
  • Jillian C. Wallis
  • Ashley E. Sands
Article

Abstract

We present preliminary findings from a three-year research project comprised of longitudinal qualitative case studies of data practices in four large, distributed, highly multidisciplinary scientific collaborations. This project follows a 2 \(\times \) 2 research design: two of the collaborations are big science while two are little science, two have completed data collection activities while two are ramping up data collection. This paper is centered on one of these collaborations, a project bringing together scientists to study subseafloor microbial life. This collaboration is little science, characterized by small teams, using small amounts of data, to address specific questions. Our case study employs participant observation in a laboratory, interviews (\(n=49\) to date) with scientists in the collaboration, and document analysis. We present a data workflow that is typical for many of the scientists working in the observed laboratory. In particular, we show that, although this workflow results in datasets apparently similar in form, nevertheless a large degree of heterogeneity exists across scientists in this laboratory in terms of the methods they employ to produce these datasets—even between scientists working on adjacent benches. To date, most studies of data in little science focus on heterogeneity in terms of the types of data produced: this paper adds another dimension of heterogeneity to existing knowledge about data in little science. This additional dimension makes more complex the task of management and curation of data for subsequent reuse. Furthermore, the nature of the factors that contribute to heterogeneity of methods suggest that this dimension of heterogeneity is a persistent and unavoidable feature of little science.

Keywords

Data deluge Big science Little science Multidisciplinary scholarship Knowledge infrastructures 

Notes

Acknowledgments

The work in this paper has been supported by the Sloan Foundation Award #20113194, The Transformation of Knowledge, Culture and Practice in Data-Driven Science: A Knowledge Infrastructures Perspective. We also acknowledge the contributions of Milena Golshan, Irene Pasquetto, and Laura A. Wynholds for commenting on drafts of this paper, and Elaine Levia for technical and administrative support.

References

  1. 1.
    Altman, M.: Digital preservation through archival collaboration: the data preservation alliance for the social sciences. Am. Arch. 72(1), 169–182 (2009)Google Scholar
  2. 2.
    Anderson C.: The long tail. Wired Mag., 12(10) (2004, October). http://www.wired.com/wired/archive/12.10/tail_pr.html
  3. 3.
    Aronova, E., Baker, K.S., Oreskes, N.: Big science and big data in biology: from the international geophysical year through the international biological program to the long term ecological research (LTER) network, 1957-present. Hist. Stud. Nat. Sci. 40(2), 183–224 (2010). doi: 10.1525/hsns.2010.40.2.183 Google Scholar
  4. 4.
    Association of Research Libraries: The research library’s role in digital repository services: final report of the ARL digital repository issues task force. Association of Research Libraries. Washington, DC (2009b). www.arl.org/bm~doc/repository-services-report.pdf
  5. 5.
    Bechhofer, S., Ainsworth, J., Bhagat, J., Buchan, I., Couch, P., Cruickshank, D., Sufi, S.: Why linked data is not enough for scientists. In: Sixth IEEE e-science conference. Brisbane, Australia (2010). http://eprints.ecs.soton.ac.uk/21587/
  6. 6.
    Berman, F., Lavoie, B., Ayris, P., Choudhury, G. S., Cohen, E., Courant, P., Van Camp, A.: Sustaining the digital investment: issues and challenges of economically sustainable digital preservation (Interim Report of the Blue Ribbon Task Force on Sustainable Digital Preservation and Access). San Diego (2008). http://brtf.sdsc.edu/publications.html
  7. 7.
    Bijker, W.E., Hughes, T.P., Pinch, T.J.: The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology. MIT Press, Cambridge (1987)Google Scholar
  8. 8.
    Borgman, C. L.: Big data, little data, no data: scholarship in the networked world. MIT Press, Cambridge, MA (2015)Google Scholar
  9. 9.
    Borgman, C. L.: The premise and promise of the global information infrastructure. First Monday, 5 (2000). http://www.firstmonday.dk/issues/issue5_8/borgman/index.html
  10. 10.
    Borgman, C.L.: Scholarship in the Digital Age: Information, Infrastructure, and the Internet. MIT Press, Cambridge (2007)Google Scholar
  11. 11.
    Borgman, C.L.: The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 63(6), 1059–1078 (2012). doi: 10.1002/asi.22634 CrossRefGoogle Scholar
  12. 12.
    Borgman, C.L., Wallis, J.C.: Building digital libraries for scientific data: an exploratory study of data practices in habitat ecology. In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C. (eds.) Proceedings of the 10th European Conference on Research and Advanced Technology for Digital Libraries, pp. 170–183. Springer, Berlin, Heidelberg, Alicante, Spain (2006)CrossRefGoogle Scholar
  13. 13.
    Borgman, C.L., Wallis, J.C., Enyedy, N.D.: Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries. Int. J. Digit. Libr. 7(1–2), 17–30 (2007). doi: 10.1007/s00799-007-0022-9 CrossRefGoogle Scholar
  14. 14.
    Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Support. Coop. Work 21(6), 485–523 (2012). doi: 10.1007/s10606-012-9169-z CrossRefGoogle Scholar
  15. 15.
    Bozeman, B., Fay, D., Slade, C.P.: Research collaboration in universities and academic entrepreneurship: the-state-of-the-art. J. Technol. Transf. 38(1), 1–67 (2013). doi: 10.1007/s10961-012-9281-8 CrossRefGoogle Scholar
  16. 16.
    Callon, M.: The sociology of an actor–network: the case of the electric vehicle. In: Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World, pp. 19–34. Macmillan, London (1986)Google Scholar
  17. 17.
    Center for Dark Energy Biosphere Investigations: Center for dark energy biosphere investigations STC annual report 2013 (2014). http://www.darkenergybiosphere.org/internal/docs/C-DEBI-Annual-Report-2013.pdf
  18. 18.
    CODATA-ICSTI Task Group on Data Citation Standards Practices: Out of cite, out of mind: the current state of practice, policy, and technology for the citation of data. Data Sci. J., 12, CIDCR1–CIDCR75 (2013). doi: 10.2481/dsj.OSOM13-043
  19. 19.
    Data’s shameful neglect. Nature, 461(7261), 145 (2009). doi: 10.1038/461145a
  20. 20.
    Dealing with data. Science, 331(6018), 692–729 (2011)Google Scholar
  21. 21.
    Deuten, J. J.: Cosmopolitanising technologies: a study of four emerging technological regimes. Twente University Press, Enschede (2003).http://doc.utwente.nl/38695/1/t0000007.pdf
  22. 22.
    Edwards, K.: Center for dark energy biosphere investigations (C-DEBI): a center for resolving the extent, function, dynamics and implications of the subseafloor Biosphere (2009). http://www.darkenergybiosphere.org/internal/docs/2009C-DEBI_FullProposal.pdf
  23. 23.
    Edwards, P.N.: A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. MIT Press, Cambridge, MA (2010)Google Scholar
  24. 24.
    Edwards, P. N., Jackson, S. J., Bowker, G. C., Knobel, C. P.: Understanding infrastructure: dynamics, tensions, and design: report of a workshop on history and theory of infrastructure, lessons for new scientific cyberinfrastructures. National Science Foundation, Washington, DC (2007). http://hdl.handle.net/2027.42/49353
  25. 25.
    Edwards, P. N., Jackson, S. J., Chalmers, M. K., Bowker, G. C., Borgman, C. L., Ribes, D., Calvert, S.: Knowledge infrastructures: intellectual frameworks and research challenges (p. 40). University of Michigan, Ann Arbor, MI (2013). http://deepblue.lib.umich.edu/handle/2027.42/97552
  26. 26.
    Faniel, I.M., Jacobsen, T.E.: Reusing scientific data: how earthquake engineering researchers assess the reusability of colleagues’ data. J. Comput. Support. Coop. Work 19(3–4), 355–375 (2010). doi: 10.1007/s10606-010-9117-8 CrossRefGoogle Scholar
  27. 27.
    Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Pub. Co, Chicago (1967)Google Scholar
  28. 28.
    Hammersley, M., Atkinson, P.: Ethnography: Principles in Practice. Routledge, London (2007)Google Scholar
  29. 29.
    Helland, P.: If you have too much data, then “good enough” is good enough. Commun. ACM 54, 40–47 (2011). doi: 10.1145/1953122.1953140 CrossRefGoogle Scholar
  30. 30.
    Hey, A.J.G., Trefethen, A.: The data deluge: an e-science perspective. In: Berman, F. Fox, G., Hey, A.J.G. (Eds.) Grid computing: making the global infrastructure a reality, pp. 809–824. Wiley, West Sussex, England (2003). http://www.rcuk.ac.uk/escience/documents/report_datadeluge.pdf
  31. 31.
    Hine, C.: Connective ethnography for the exploration of e-science. J. Comput. Media. Commun. 12(2), 618–634 (2007). doi: 10.1111/j.1083-6101.2007.00341.x CrossRefGoogle Scholar
  32. 32.
    Hughes, T.P.: Technological momentum. In: Smith, M.R., Marx, L. (eds.) Does Technology Drive History? The Dilemma of Technological Determinism. pp. 101–113. MIT Press, Cambridge, MA (1994)Google Scholar
  33. 33.
    Kallmeyer, J., Pockalny, R., Adhikari, R.R., Smith, D.C., D’Hondt, S.: Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl. Acad. Sci. 109(40), 16213–16216 (2012)CrossRefGoogle Scholar
  34. 34.
    Karasti, H., Baker, K.S., Millerand, F.: Infrastructure time: long-term matters in collaborative development. Comput. Support. Coop. Work (CSCW) 19(3–4), 377–415 (2010). doi: 10.1007/s10606-010-9113-z CrossRefGoogle Scholar
  35. 35.
    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al.: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012)CrossRefGoogle Scholar
  36. 36.
    Knorr-Cetina, K.: The manufacture of knowledge. Pergamon Press Oxford, (1981). http://sites.google.com/site/sciencestudies09/reader/Knorr-Cetina_ManKnow-Chapter1.doc
  37. 37.
    Knorr-Cetina, K.: Epistemic Cultures: How the Sciences Make Knowledge. Harvard University Press, Cambridge (1999)Google Scholar
  38. 38.
    Latour, B.: Science in Action: How to Follow Scientists and Engineers through Society. Harvard University Press, Cambridge (1987)Google Scholar
  39. 39.
    Latour, B., Woolgar, S.: Laboratory Life: The Construction of Scientific Facts, 2nd edn. Princeton University Press, Princeton (1986)Google Scholar
  40. 40.
    Lloyd, K.G., May, M.K., Kevorkian, R.T., Steen, A.D.: Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor. Appl. Environ. Microbiol. 79(24), 7790–7799 (2013)CrossRefGoogle Scholar
  41. 41.
    Lynch, M.: Art and artifact in laboratory science: a study of shop work and shop talk in a research laboratory. Routledge & Kegan Paul, London (1985)Google Scholar
  42. 42.
    Meng, X.-L.: Multi-party inference and uncongeniality. In: Lovric, M. (ed.), International Encyclopedia of Statistical Science, pp. 884–888. Springer, Berlin Heidelberg (2011). http://link.springer.com/referenceworkentry/10.1007/978-3-642-04898-2_381
  43. 43.
    O’Donoghue, T., Punch, K.: Qualitative Educational Research in Action: Doing and Reflecting. Routledge, London (2004)Google Scholar
  44. 44.
    Office of Science and Technology Policy: Harnessing the power of digital data for science and society: Report of the Interagency Working Group on Digital Data to the Committee on Science of the National Science and Technology Council. Washington, D.C. (2009). http://www.nitrd.gov/About/Harnessing_Power.aspx
  45. 45.
    Østerlund, C., Carlile, P.: Relations in practice: sorting through practice theories on knowledge sharing in complex organizations. Inf. Soc. 21(2), 91–107 (2005)CrossRefGoogle Scholar
  46. 46.
    Palmer, C. L., Cragin, M. H., Heidorn, P. B., Smith, L. C.: Data curation for the long tail of science: the case of environmental studies. In: Presented at the 3rd International Digital Curation Conference, Washington, DC (2007). https://apps.lis.uiuc.edu/wiki/download/attachments/32666/Palmer_DCC2007.rtf?version=1
  47. 47.
    Ribes, D., Bowker, G.C.: Between meaning and machine: learning to represent the knowledge of communities. Inf. Org. 19(4), 199–217 (2009). doi: 10.1016/j.infoandorg.2009.04.001 CrossRefGoogle Scholar
  48. 48.
    Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537–7541 (2009)CrossRefGoogle Scholar
  49. 49.
    Star, S.L., Ruhleder, K.: Steps toward an ecology of infrastructure: design and access for large information spaces. Inf. Syst. Res. 7(1), 111–134 (1996). doi: 10.1287/isre.7.1.111 CrossRefGoogle Scholar
  50. 50.
    Traweek, S.: Beamtimes and Lifetimes: The World of High Energy Physicists (1st Harvard University Press pbk.). Harvard University Press, Cambridge (1988)Google Scholar
  51. 51.
    Uhlir, P. F. (Ed.): For attribution-developing data attribution and citation practices and standards: summary of an International Workshop. The National Academies Press, Washington, D.C (2012). http://www.nap.edu/catalog.php?record_id=13564
  52. 52.
    Wallis, J.C., Borgman, C.L.: Who is responsible for data? An exploratory study of data authorship, ownership, and responsibility. In: Annual meeting of the American Society for Information Science and Technology (Vol. 48, pp. 1–10). New Orleans, LA. Information (2011). doi: 10.1002/meet.2011.14504801188
  53. 53.
    Wallis, J.C., Borgman, C.L., Mayernik, M.S., Pepe, A.: Moving archival practices upstream: an exploration of the life cycle of ecological sensing data in collaborative field research. Int. J. Digital Curation 3(1), 114–126 (2008). doi: 10.2218/ijdc.v3i1.46 CrossRefGoogle Scholar
  54. 54.
    Wallis, J.C., Borgman, C.L., Mayernik, M.S., Pepe, A., Ramanathan, N., Hansen, M. A.: Know thy sensor: trust, data quality, and data integrity in scientific digital libraries. In: Proceedings of the 11th European Conference on Research and Advanced Technology for Digital Libraries, Vol. LINCS 4675, pp. 380–391. Springer, Budapest, Hungary:Berlin (2007). doi: 10.1007/978-3-540-74851-9_32
  55. 55.
    Wallis, J.C., Rolando, E., Borgman, C.L.: If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS ONE 8(7), e67332 (2013). doi: 10.1371/journal.pone.0067332 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter T. Darch
    • 1
  • Christine L. Borgman
    • 1
  • Sharon Traweek
    • 1
  • Rebekah L. Cummings
    • 1
  • Jillian C. Wallis
    • 1
  • Ashley E. Sands
    • 1
  1. 1.Knowledge Infrastructures Project, Department of Information StudiesUCLALos AngelesUSA

Personalised recommendations