Advertisement

International Journal on Digital Libraries

, Volume 15, Issue 1, pp 1–25 | Cite as

How to assess image quality within a workflow chain: an overview

  • Gianluigi Ciocca
  • Silvia Corchs
  • Francesca Gasparini
  • Raimondo Schettini
Article

Abstract

Image quality assessment (IQA) is a multi-dimensional research problem and an active and evolving research area. This paper aims to provide an overview of the state of the art of the IQA methods, putting in evidence their applicability and limitations in different application domains. We outline the relationship between the image workflow chain and the IQA approaches reviewing the literature on IQA methods, classifying and summarizing the available metrics. We present general guidelines for three workflow chains in which IQA policies are required. The three workflow chains refer to: high-quality image archives, biometric system and consumer collections of personal photos. Finally, we illustrate a real case study referring to a printing workflow chain, where we suggest and actually evaluate the performance of a set of specific IQA methods.

Keywords

Image quality assessment Image quality metrics Image production workflow chain Printing workflow chain 

Notes

Acknowledgments

The authors would like to thank Fabrizio Marini for the insightful discussions on image quality and for his work in developing the no reference image quality tool. This work was partially supported by Océ-Canon.

References

  1. 1.
    Alers, H., Bos, L., Heynderickx, I.: How the task of evaluating image quality influences viewing behaviour. In: The Third International Workshop on Quality of Multimedia Experience (QoMEX), Belgium (2011)Google Scholar
  2. 2.
    ANSI: Face Recognition Format for Data Interchange. ANSI INCITS, pp. 385–2004. ANSI (2004)Google Scholar
  3. 3.
    Archives UN: Technical guidelines for digitizing archival materials for electronic access: creation of production master files—raster images. http://www.archives.gov/preservation/technical/guidelines.html. Accessed 09 Feb 2012
  4. 4.
    Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques. Data-Centric Systems and Applications. Springer Inc, New York (2006)Google Scholar
  5. 5.
    Batini, C., Barone, D., Cabitza, F., Ciocca, G., Marini, F., Pasi, G., Schettini, R.: Toward a unified model for information quality. In: VLDB’08 (2008)Google Scholar
  6. 6.
    BCR’s CDP Digital Imaging Best Practices Working Group: BCR’s CDP Digital Imaging Best Practices Version 2.0. http://mwdl.org/docs/digital-imaging-bp_2.0.pdf (2008)
  7. 7.
    Bhattacharya, S., Sukthankar, R., Shah, M.: A holistic approach to aesthetic enhancement of photographs. ACM Trans. Multimed. Comput. Commun. Appl. 7S, 21:1–21:21 (2011)Google Scholar
  8. 8.
    Bovik, A., Liu, S.: Dct-domain blind measurement of blocking artifacts in dct-coded images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1725–1728 (2001)Google Scholar
  9. 9.
    Bovik, A.C., Wang, Z.: Modern Image Quality Assessment. Morgan & Claypool Publishers, San Rafael (2006)Google Scholar
  10. 10.
    Brandao, T., Queluz, M.P.: No-reference image quality assessment based on dct domain statistics. Signal Process. 88(4), 822–833 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Charrier, C., Lezoray, O., Lebrun, G.: Machine learning to design full-reference image quality assessment algorithm. Signal Process. Image Commun. 27, 209–219 (2012)CrossRefGoogle Scholar
  12. 12.
    Callet, P., Autrusseau, F.: Subjective quality assessment irc-cyn/iovc database. http://www.irccyn.ec-nantes.fr/ivcdb/ (2005)
  13. 13.
    Carnec, M., Callet, P.L., Barba, D.: Objective quality assessment of color images based on a generic perceptual reduced reference. Signal Process. Image Commun. 23(4), 239–256 (2008)CrossRefGoogle Scholar
  14. 14.
    Chandler, D., Hemami, S.: A57 image database. http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html (2007)
  15. 15.
    Chen, C., Bloom, A.: A blind reference-free blockiness measure. In: Lecture Notes in Computer Science, vol. 6297, pp. 112–123. Springer, Berlin (2010)Google Scholar
  16. 16.
    Chen, G.H., Yang, C.L., Xie, S.L.: Gradient-based structural similarity for image quality assessment. In: 2006 IEEE International Conference on Image Processing, pp. 2929–2932(2007)Google Scholar
  17. 17.
    Chen, M.J., Bovik, A.C.: No-reference image blur assessment using multiscale gradient. EURASIP J. Image Video Process. 1, 1–11 (2011)CrossRefGoogle Scholar
  18. 18.
    Choi, M., Jung, J., Jeon, J.: No reference image quality assessment using blur and noise. Int. J. Comput. Sci. Eng. 2(3), 76–80 (2009)Google Scholar
  19. 19.
    Ciancio, A., da Costa, A., da Silva, E., Said, A., Samadani, R., Obrador, P.: Objective no-reference image blur metric based on local phase coherence. Electron. Lett. 45(23), 1162–1163 (2009)CrossRefGoogle Scholar
  20. 20.
    Cohen, E., Yitzhaky, Y.: No-reference assessment of blur and noise impacts on image quality. Signal Image Video Process. 4, 289–302 (2010)CrossRefGoogle Scholar
  21. 21.
    Corchs, S., Gasparini, F., Marini, F., Schettini, R.: Image quality: a tool for no-reference assessment methods. In: Image Quality and System Performance VIII, IS&T/SPIE Electronic Imaging, SPIE, vol. 7867, pp. 78,760X (1–9) (2011)Google Scholar
  22. 22.
    Corchs, S., Gasparini, F., Schettini, R.: No reference image quality classification for jpeg distorted images. Digital Signal Process. (2014a, in press)Google Scholar
  23. 23.
    Corchs, S., Gasparini, F., Schettini, R.: Noisy images-jpeg compressed: subjective and objective image quality evaluation. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, pp. 90,160V–90,160V (2014b)Google Scholar
  24. 24.
    Corner, B.R., Narayanan, R.M., Reichenbach, S.E.: Noise estimation in remote sensing imagery using data masking. Int. J. Remote Sens. 24(4), 689–702 (2003)CrossRefGoogle Scholar
  25. 25.
    Crosby, P.: Quality is Free. McGraw-Hill, New York (1979)Google Scholar
  26. 26.
    Csurka, G., Skaff, S., Marchesotti, L., Saunders, C.: Learning moods and emotions from color combinations. In: Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP ’10, pp. 298–305 (2010)Google Scholar
  27. 27.
    Cusano, C., Ciocca, G., Schettini, R.: Image annotation using SVM. In: Proceedings of Internet Imaging, SPIE, vol. 5304, pp. 330–338 (2004)Google Scholar
  28. 28.
    Jayaraman, D., Moorthy, A., Mittal, A., Bovik, A.: Objective quality assessment of multiply distorted images. In: Proceedings of the Asilomar Conference on Signals, Systems and Computers (2012)Google Scholar
  29. 29.
    Daly, S.J.: Visible differences predictor: an algorithm for the assessment of image fidelity. In: Rogowitz, B.E. (ed) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1666, pp. 2–15 (1992)Google Scholar
  30. 30.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Proceedings of ECCV, pp. 7–13 (2006)Google Scholar
  31. 31.
    EC: Europeans guidelines on quality criteria for computed tomography. http://www.drs.dk/guidelines/ct/quality/. Accessed 09 Feb 2012
  32. 32.
    Engeldrum, P.: A short image quality model taxonomy. J. Imaging Sci. Technol. 48(2), 160–165 (2004)Google Scholar
  33. 33.
    Fei, X., Xiao, L., Sun, Y., Wei, Z.: Perceptual image quality assessment based on structural similarity and visual masking. Signal Process. Image Commun. 27(7), 772–783 (2012)CrossRefGoogle Scholar
  34. 34.
    Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (jnb). IEEE Trans. Image Process. 18(4), 717–728 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Foi, A.: Anisotropic nonparametric image restoration demobox. http://www.cs.tut.fi/lasip/2D/ (2006)
  36. 36.
    Franziska, S., Frey, J.M.R.: Digital imaging for photographic collections: foundations for technical standards. Technical report, Rochester Institute of Technology, Rochester (1999)Google Scholar
  37. 37.
    Gabarda, S., Cristóbal, G.: Blind image quality assessment through anisotropy. J. Opt. Soc. Am. A 24(12), B42–B51 (2007)CrossRefGoogle Scholar
  38. 38.
    Gabarda, S., Cristobal, G.: No-reference image quality assessment through the von mises distribution. J. Opt. Soc. Am. A 29(10), 2058–2066 (2012)CrossRefGoogle Scholar
  39. 39.
    Gasparini, F., Schettini, R.: A review of redeye detection and removal in digital images through patents. Recent Pat. Electr. Eng. 2(1), 45–53 (2009)CrossRefGoogle Scholar
  40. 40.
    Girod, B.: What’s wrong with mean-squared error? In: Watson, A.B. (ed.) Digital Images and Human Vision, pp. 207–220. MIT Press, Cambridge (1993)Google Scholar
  41. 41.
    Gonzales, R.C., Woods, R.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  42. 42.
    Tang, H., Joshi, N., Kapoor, A.: Learning a blind measure of perceptual image quality. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 305–312 (2011)Google Scholar
  43. 43.
    Hasler, D., Süsstrunk, S.E.: Measuring colorfulness in natural images. In: Rogowitz, B.E., Pappas, T.N. (eds.) Human Vision and Electronic Imaging VIII. SPIE, vol. 5007, pp. 87–95 (2003)Google Scholar
  44. 44.
    I3A: Fundamentals and review of considered test methods. CPIQ Initiative Phase 1 White Paper (2007)Google Scholar
  45. 45.
    ICAO-NTWG: Machine readable travel documents (MRTDs): history, interoperability, and implementation. Technical report, International civil aviation organization (2007)Google Scholar
  46. 46.
    Imatest: Digital Image Quality Testing. http://www.imatest.com (2010)
  47. 47.
    Immerkaer, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996)CrossRefGoogle Scholar
  48. 48.
    ISO: Quality management and quality assurance. vocabulary (2000). iso 84021994Google Scholar
  49. 49.
    ISO: Image technology colour management—architecture, profile format and data structure? Part 1: based on icc.1:2004-10 (2005). iso 15076-1Google Scholar
  50. 50.
  51. 51.
    ISO/IEC: Biometric data interchange formats—part 5: face image data (2004). is19794-5Google Scholar
  52. 52.
    ITU: Methodology for the subjective assessment of the quality for television pictures. Technical report, ITU-R Rec. BT. 500-13 (01.12) (2012)Google Scholar
  53. 53.
    Janssen, T.: Computational Image Quality. SPIE Press, Bellingham (2001)Google Scholar
  54. 54.
    Jonas, P.: Photographic Composition Simplified. Amphoto Publisher, New York (1976)Google Scholar
  55. 55.
    Juran, J.: Juran on Planning for Quality. The Free Press, New York (1988)Google Scholar
  56. 56.
    Keelan, B.W.: Handbook of Image Quality: Characterization and Prediction. CRC Press, Boca Raton (2002)Google Scholar
  57. 57.
    Kusuma, T., Zepernick, H.J.: A reduced-reference perceptual quality metric for in-service image quality assessment. In: Joint First Workshop on Mobile Future and Symposium on Trends in Communications, 2003. SympoTIC ’03, pp. 71–74 (2003)Google Scholar
  58. 58.
    Laparra, V., Muoz, J., Malo, J.: Divisive normalization image quality metric revisited. J. Opt. Soc. Am. A 27(4), 852–864 (2010)CrossRefGoogle Scholar
  59. 59.
    Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1):011,006-1–011,006-21 (2010)Google Scholar
  60. 60.
    Li, C., Bovik, A.C.: Content-partitioned structural similarity index for image quality assessment. Signal Process. Image Commun. 25(7), 517–526 (2010) (special Issue on Image and Video Quality Assessment)Google Scholar
  61. 61.
    Li, Q., Wang, Z.: General-purpose reduced-reference image quality assessment based on perceptually and statistically motivated image representation. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp. 1192–1195 (2008)Google Scholar
  62. 62.
    Liu, H., Heynderickx, I.: Studying the added value of visual attention in objective image quality metrics based on eye movement data. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 3097–3100 (2009)Google Scholar
  63. 63.
    Liu, H., Redi, J., Alers, H., Zunino, R., Heynderickx, I.: Efficient neural-network based no-reference approach to an overall quality metric for jpeg and jpeg2000 compressed images. J. Electron. Imaging 20, 043,007-(1–15) (2011)Google Scholar
  64. 64.
    Lubin, J.: A visual discrimination model for image system design and evaluation. In: Peli, E. (ed.) Visual Models for Target Detection and Recognition, pp. 207–220. World Scientific Publisher, Singapore (1995)Google Scholar
  65. 65.
    Lundstrom, C.: Technical report: Measuring digital image quality. Technical report, Linkping UniversityLinkping University, Visual Information Technology and Applications (VITA), The Institute of Technology (2006)Google Scholar
  66. 66.
    Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: IEEE 2002 International Conference on Image Processing, pp. 57–60 (2002)Google Scholar
  67. 67.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20, 209–212 (2013)CrossRefGoogle Scholar
  69. 69.
    Moorthy, A., Bovik, A.: Visual importance pooling for image quality assessment. IEEE J. Sel. Top. Signal Process. 3(2), 193–201 (2009)CrossRefGoogle Scholar
  70. 70.
    Moorthy, A., Bovik, A.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011a)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Moorthy, A., Bovik, A.: Visual quality assessment algorithms: what does the future hold? Multimed. Tools Appl. 51, 675–696 (2011b)CrossRefGoogle Scholar
  72. 72.
    Muijs, R., Kirenko, I.: A no-reference blocking artifact measure for adaptive video processing. In: Proceedings of the 13th European Signal Processing Conference 2005 (2005)Google Scholar
  73. 73.
    Ninassi, A., Le Meur, O., Le Callet, P., Barba, D.: Task impact on the visual attention in subjective image quality assessment. In: Proceedings of the 14th European Signal Processing Conference, Eurasip EUSIPCO (2006)Google Scholar
  74. 74.
    Ninassi, A., Le Meur, O., Le Callet, P., Barbba, D.: Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric. In: IEEE International Conference on Image Processing, 2007. ICIP 2007, vol. 2, pp. II-169–II-172 (2007)Google Scholar
  75. 75.
    Nishiyama, M., Okabe, T., Sato, I., Sato, Y.: Aesthetic quality classification of photographs based on color harmony. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 33–40 (2011)Google Scholar
  76. 76.
    Ong, E., Lin, W., Lu, Z., Yang, X., Yao, S., Pan, F., Jiang, L., Moschetti, F.: A no-reference quality metric for measuring image blur. In: Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, vol. 14, pp. 469–472 (2003)Google Scholar
  77. 77.
    Pan, F., Lin, X., Rahardja, S., Lin, W., Ong, E., Yao, S., Lu, Z., Yang, X.: A locally adaptive algorithm for measuring blocking artifacts in images and videos. Signal Process. Image Commun. 19(6), 499–506 (2004)CrossRefGoogle Scholar
  78. 78.
    Peli, E.: Contrast in complex images. J. Opt. Soc. Am. 7, 2032–2040 (1990)CrossRefGoogle Scholar
  79. 79.
    Pessoa, A., Falcao, A., e Silva, A., Nishihara, R., Lotufo, R.: Video quality assessment using objective parameters based on image segmentation. In: Proceedings of the SBT/IEEE International Telecommunications Symposium, ITS ’98, vol. 2, pp. 498–503 (1998)Google Scholar
  80. 80.
    Pinson, M., Wolf, S.: A new standardized method for objectively measuring video quality. IEEE Trans. Broadcast. 50(3), 312–322 (2004)CrossRefGoogle Scholar
  81. 81.
    Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Astola, J., Carli, M., Battisti, F.: A database for evaluation of full reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10, 30–45 (2009)Google Scholar
  82. 82.
    Rank, K., Lendl, M., Unbehauen, R.: Estimation of image noise variance. IEE Proc. Vis. Image Signal Process. 146(2), 80–84 (1999)CrossRefGoogle Scholar
  83. 83.
    Redi, J.A., Liu, H., Zunino, R., Heynderickx, I.: Interactions of visual attention and quality perception. In: IS&T/SPIE Electronic Imaging 2011 and Human Vision and Electronic Imaging XVI, vol. 7865 (2011)Google Scholar
  84. 84.
    Rehman, A., Wang, Z.: Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process. 21(8), 3378–3389 (2012)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Reibman, A., Bell, R., Gray, S.: Quality assessment for super-resolution image enhancement. In: 2006 IEEE International Conference on Image Processing, pp. 2017–2020 (2006)Google Scholar
  86. 86.
    de Ridder, H., Endrikhovski, S.: Image quality is fun: reflections on fidelity, usefulness and naturalness. SID Symposium Digest of Technical Papers, vol. 33, pp. 986–989 (2002)Google Scholar
  87. 87.
    Saad, M., Bovik, A., Charrier, C.: A dct statistics-based blind image quality index. IEEE Signal Process. Lett. 17(6), 583–586 (2010)CrossRefGoogle Scholar
  88. 88.
    Saad, M., Bovik, A., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Safranek, R., Johnston, J.: A perceptually tuned sub-band image coder with image dependent quantization and post-quantization data compression. In: 1989 International Conference on Acoustics, Speech, and Signal Processing, 1989. ICASSP-89, pp. 1945–1948 (1989)Google Scholar
  90. 90.
    Saha, S., Vemuri, R.: An analysis on the effect of image activity on lossy coding performance. In: Proceedings of the 2000 IEEE International Symposium on Circuits and Systems, 2000. ISCAS 2000, Geneva, vol. 3, pp. 295–298 (2000)Google Scholar
  91. 91.
    Sazzad, Z., Kawayoke, Y., Horita, Y.: Mict image quality evaluation database. http://mict.eng.u-toyama.ac.jp/mict/index2.html (2000)
  92. 92.
    Schloss, K., Palmer, S.: Aesthetic response to color combinations: preference, harmony, and similarity. Atten. Percept. Psychophys. 73, 551–571 (2011)CrossRefGoogle Scholar
  93. 93.
    Seshadrinathan, K., Bovik, A.C.: Motion tuned spatio-temporal quality assessment of natural videos. IEEE Trans. Image Process. 19(2), 335–350 (2010)MathSciNetCrossRefGoogle Scholar
  94. 94.
    Sharma, G.: Digital Color Imaging Handbook. CRC Press Inc, Boca Raton (2002)CrossRefGoogle Scholar
  95. 95.
    Sharma, G., Bala, R. (eds.): Digital Color Imaging Handbook, vol. 29. CRC, Boca Raton (2003)Google Scholar
  96. 96.
    Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)CrossRefGoogle Scholar
  97. 97.
    Sheikh, H., Wang, Z., Cormack, L., Bovik, A.: Live image quality assessment database release 2 (2005)Google Scholar
  98. 98.
    Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1), 1193–1216 (2001)CrossRefGoogle Scholar
  99. 99.
    Solli, M., Lenz, R.: Color harmony for image indexing. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1885–1892 (2009)Google Scholar
  100. 100.
    Soundararajan, R., Bovik, A.: Rred indices: reduced reference entropic differencing for image quality assessment. IEEE Trans. Image Process. 21(2), 517–526 (2012)MathSciNetCrossRefGoogle Scholar
  101. 101.
    Soundararajan, R., Bovik, A.: Video quality assessment by reduced reference spatio-temporal entropic differencing. IEEE Trans. Circuits Syst. Video Technol. 23(4), 684–694 (2013)CrossRefGoogle Scholar
  102. 102.
    Suthaharan, S.: No-reference visually significant blocking artifact metric for natural scene images. Signal Process. 89(8), 1647–1652 (2009)CrossRefzbMATHGoogle Scholar
  103. 103.
    TASI: Technical advisory service for images. http://www.tasi.ac.uk/advice/creating/quality.html (1979)
  104. 104.
    Teo, P., Heeger, D.: Perceptual image distortion. In: Proceedings of the IEEE International Conference on Image Processing, 1994. ICIP-94, vol. 2, pp. 982–986 (1994a)Google Scholar
  105. 105.
    Teo, P., Heeger, D.J.: Perceptual image distortion. In: Proceedings of the SPIE, pp. 982–986 (1994b)Google Scholar
  106. 106.
    Thurstone, L.L.: A law of comparative judgement. Psychol. Rev. 34, 273–286 (1927)CrossRefGoogle Scholar
  107. 107.
    Tong, Y., Konik, H., Cheikh, F., Tremeau, A.: Full reference image quality assessment based on saliency map analysis. J. Imaging Sci. 54(3), 30,503-1–30,503-14 (2010)Google Scholar
  108. 108.
    Torgerson, W.: Theory and Methods of Scaling. Wiley, Ney York (1958)Google Scholar
  109. 109.
    Torralba, A., Oliva, A.: Statistics of natural image categories. Netw. Comput. Neural Syst. 14(3), 391–412 (2003)Google Scholar
  110. 110.
    Tourancheau, S., Autrusseau, F., Sazzad, Z., Horita, Y.: Impact of subjective dataset on the performance of image quality metrics. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp. 365–368 (2008)Google Scholar
  111. 111.
    Vlachos, T.: Detection of blocking artifacts in compressed video. Electron. Lett. 36(13), 1106–1108 (2000)CrossRefGoogle Scholar
  112. 112.
    VQEG: Vqeg final report of fr-tv phase ii validation test. Technical report, Video Quality Experts Group (VQEG) (2003)Google Scholar
  113. 113.
    Wang, Z., Bovik, A.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar
  114. 114.
    Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011)MathSciNetCrossRefGoogle Scholar
  115. 115.
    Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Proceedings of the SPIE Human Vision and Electronic Imaging, vol. 5666, pp. 149–159 (2005)Google Scholar
  116. 116.
    Wang, Z., Bovik, A., Evans, B.: Blind measurement of blocking artifacts in images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 981–984 (2000)Google Scholar
  117. 117.
    Wang, Z., Sheikh, H., Bovik, A.: No-reference perceptual quality assessment of jpeg compressed images. In: Proceedings of the 2002 International Conference on Image Processing, vol. 1, pp. I-477–I-480 (2002) Google Scholar
  118. 118.
    Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2004, vol. 2, pp. 1398–1402 (2003)Google Scholar
  119. 119.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004a)CrossRefGoogle Scholar
  120. 120.
    Wang, Z., Simoncelli, E.P., Hughes, H.: Local phase coherence and the perception of blur. In: Advances in Neural Information Processing Systems, NIPS03, pp. 786–792. MIT Press, Cambridge (2004b)Google Scholar
  121. 121.
    Watson, A.B.: DCT quantization matrices visually optimized for individual images. In: Allebach, J.P., Rogowitz, B.E. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1913, pp. 202–216 (1993)Google Scholar
  122. 122.
    Watson, A.B., Borthwick, R., Taylor, M.: Image quality and entropy masking. In: SPIE Human Vision and Electronic Imaging Conference, vol. 3016, pp. 2–12 (1997)Google Scholar
  123. 123.
    Wayne, S.: Quality control circle and company wide quality control. Qual. Prog. 16(10), 14–17 (1983)Google Scholar
  124. 124.
    Wee, C.Y., Paramesran, R., Mukundan, R., Jiang, X.: Image quality assessment by discrete orthogonal moments. Pattern Recognit. 43(12), 4055–4068 (2010)CrossRefzbMATHGoogle Scholar
  125. 125.
    Winkler, S., Süsstrunk, S.: Visibility of noise in natural images. In: Proceedings of the IS&T/SPIE Electronic Imaging 2004: Human Vision and Electronic Imaging IX, vol. 5292, pp. 121–129 (2004)Google Scholar
  126. 126.
    Wu, H., Yuen, M.: A generalized block-edge impairment metric for video coding. IEEE Signal Process. Lett. 4, 317–320 (1997)CrossRefGoogle Scholar
  127. 127.
    X-Rite: X-Rite ColorChecker Classic. http://xritephoto.com/ph_product_overview.aspx?ID=1192. Accessed 09 Feb 2012
  128. 128.
    Ye, P., Doermann, D.: No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 21(7), 3129–3138 (2012)MathSciNetCrossRefGoogle Scholar
  129. 129.
    Yeganeh, H., Wang, Z.: Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22(2), 657–667 (2013)MathSciNetCrossRefGoogle Scholar
  130. 130.
    Yeganeh, H., Rostami, M., Wang, Z.: Objective quality assessment for image super-resolution: a natural scene statistics approach. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 1481–1484 (2012)Google Scholar
  131. 131.
    Yen, R., Zektser, G.: A new approach for measuring facial image quality. Def. Stand. Progr. J. 13–25 (2008)Google Scholar
  132. 132.
    Yendrikhovskij, S.: Image quality: between science and fiction. In: PICS, pp. 173–178 (1999)Google Scholar
  133. 133.
    Zhang, D.Q., Chang, S.F.: Detecting image near-duplicate by stochastic attributed relational graph matching with learning. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, MULTIMEDIA ’04, pp. 877–884 (2004)Google Scholar
  134. 134.
    Zhang, L., Zhang, D., Mou, X., Zhang, D.: Fsim: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)MathSciNetCrossRefGoogle Scholar
  135. 135.
    Zhang, X., Wandell, B.A.: A spatial extension of cielab for digital color-image reproduction. J. Soc. Inf. Disp. 5(1), 61–63 (1997)CrossRefGoogle Scholar
  136. 136.
    Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gianluigi Ciocca
    • 1
  • Silvia Corchs
    • 1
  • Francesca Gasparini
    • 1
  • Raimondo Schettini
    • 1
  1. 1.DISCo, University of Milano BicoccaMilanItaly

Personalised recommendations