International Journal on Digital Libraries

, Volume 14, Issue 3–4, pp 101–115

Who and what links to the Internet Archive

  • Yasmin AlNoamany
  • Ahmed AlSum
  • Michele C. Weigle
  • Michael L. Nelson
Article

Abstract

The Internet Archive’s (IA) Wayback Machine is the largest and oldest public Web archive and has become a significant repository of our recent history and cultural heritage. Despite its importance, there has been little research about how it is discovered and used. Based on Web access logs, we analyze what users are looking for, why they come to IA, where they come from, and how pages link to IA. We find that users request English pages the most, followed by the European languages. Most human users come to Web archives because they do not find the requested pages on the live Web. About 65 % of the requested archived pages no longer exist on the live Web. We find that more than 82 % of human sessions connect to the Wayback Machine via referrals from other Web sites, while only 15 % of robots have referrers. Most of the links (86 %) from Websites are to individual archived pages at specific points in time, and of those 83 % no longer exist on the live Web. Finally, we find that users who come from search engines browse more pages than users who come from external Web sites.

Keywords

Web archiving Web server logs Web usage mining  Robots detection Language detection 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Internet Archive appeals for donations after \(600,000\) in fire damage. http://www.theguardian.com/technology/2013/nov/08/internet-archive-appeals-donations-fire-damage (2013)
  6. 6.
    Internet Archive building damaged by fire. http://www.bbc.co.uk/news/technology-24848907 (2013)
  7. 7.
    Wikimedia Report Card. http://reportcard.wmflabs.org/ (2014)
  8. 8.
    Ainsworth, S.G., Alsum, A., SalahEldeen, H., Weigle, M.C., Nelson, M.L.: How much of the web is archived? In: Proceedings of the 11th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’11, p. 133. ACM Press, USA (2011)Google Scholar
  9. 9.
    AlNoamany, Y., Weigle, M.C., Nelson, M.L.: Access patterns for robots and humans in web archives. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13, pp. 339–348. ACM, USA. doi:10.1145/2467696.2467722. http://doi.acm.org/10.1145/2467696.2467722 (2013) ISBN 978-1-4503-2077-1
  10. 10.
    Alsum, A., Weigle, M., Nelson, M., Sompel, H.: Profiling web archive coverage for top-level domain and content language. Research and advanced technology for digital libraries. Lecture notes in computer science, pp. 60–71. Springer, Berlin (2013)Google Scholar
  11. 11.
    Anick, P.: Using terminological feedback for web search refinement—a log-based study. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, SIGIR ’03, pp. 88–95. ACM, USA (2003)Google Scholar
  12. 12.
    Aye, T.T.: Web log cleaning for mining of web usage patterns. In: IEEE 3rd International Conference on Computer Research and Development, ICCRD, pp. 490–494 (2011)Google Scholar
  13. 13.
    Banos, V., Kim, Y., Ross, S., Manolopoulos, Y.: CLEAR: a credible method to evaluate website archivability. In: Proceedings of the 9th International Conference on Preservation of Digital Objects, iPRES (2013)Google Scholar
  14. 14.
    Bar-Yossef, Z., Broder, A.Z., Kumar, R., Tomkins, A.: Sic Transit Gloria Telae: towards an understanding of the web’s decay. In: Proceedings of the 13th International Conference on World Wide Web, WWW ’04, pp. 328–337. ACM, USA (2004)Google Scholar
  15. 15.
    Broache, A.: FBI rescinds secret order for Internet Archive records. http://news.cnet.com/8301-10784_3-9938603-7.html (2008)
  16. 16.
    Brown, R.: Selecting and weighting N-grams to identify 1100 languages. Text, speech, and dialogue. Lecture notes in computer science, pp. 475–483. Springer, Berlin (2013)Google Scholar
  17. 17.
    Carmel, D., Yom-Tov, E., Roitman, H.: Enhancing digital libraries using missing content analysis. In: Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’08, pp. 1–10. ACM, USA (2008)Google Scholar
  18. 18.
    Castellano, G., Fanelli, A.M., Torsello, M.A.: LODAP: A LOg DAta Preprocessor for mining Web browsing patterns. In: Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, AIKED ’07, vol. 6, pp. 12–17 (2007)Google Scholar
  19. 19.
    Catledge, L.D., Pitkow, J.E.: Characterizing browsing strategies in the world-wide web. Comput. Netw. ISDN Syst. 27(6), 1065–1073 (1995) Google Scholar
  20. 20.
    Cooley, R., Mobasher, B.: Data preparation for mining World Wide Web browsing patterns. Knowl. Inf. Syst. 1, 5–32 (1999)CrossRefGoogle Scholar
  21. 21.
    Costa, M., J. Silva, M.: Characterizing search behavior in Web Archives. In: Proceedings of Temporal Web Analytics Workshop, TWAW (2011)Google Scholar
  22. 22.
    Costa, M., Silva, M.J.: Understanding the information needs of web archive users. In: Proceedings of the 10th International Web Archiving, Workshop, pp. 9–16 (2010)Google Scholar
  23. 23.
    Dikaiakos, M.D., Stassopoulou, A., Papageorgiou, L.: An investigation of web crawler behavior: characterization and metrics. Comput. Commun. 28(8), 880–897 (2005)CrossRefGoogle Scholar
  24. 24.
    Doran, D., Gokhale, S.S.: Web robot detection techniques: overview and limitations. Data Min. Knowl. Discov. 22(1–2), 183–210 (2010)Google Scholar
  25. 25.
    Fukuda, K., Cho, K., Esaki, H.: The impact of residential broadband traffic on Japanese ISP backbones. SIGCOMM Comput. Commun. Rev. 35(1), 15–22 (2005)CrossRefGoogle Scholar
  26. 26.
    Harrison, T.L., Nelson, M.L.: Just-in-time recovery of missing Web Pages. In: Proceedings of the 17th Conference on Hypertext and Hypermedia, HYPERTEXT ’06, pp. 145–156. ACM, USA (2006)Google Scholar
  27. 27.
    Horrigan, J.: Broadband adoption and use in America. Federal Commun. Comm. (2010)Google Scholar
  28. 28.
    Kahle, B.: Preserving the Internet. Sci. Am. 276(3), 82–83 (1997)CrossRefGoogle Scholar
  29. 29.
    Kahle, B.: Fire update: lost many cameras, 20 boxes. No one hurt. https://blog.archive.org/2013/11/06/scanning-center-fire-please-help-rebuild/ (2013)
  30. 30.
    Kahle, B.: Reader privacy at the Internet Archive. http://blog.archive.org/2013/10/25/reader-privacy-at-the-internet-archive/ (2013)
  31. 31.
    Kahle, B.: Wayback Machine: now with 240,000,000,000 URLs. http://blog.archive.org/2013/01/09/updated-wayback/ (2013)
  32. 32.
    Kemper, E.A., Stringfield, S., Teddlie, C.: Mixed methods sampling strategies in social science research. Handbook of mixed methods in social and behavioral research, pp. 273–296 (2003)Google Scholar
  33. 33.
    Koehler, W.: Web page change and persistence-a four-year longitudinal study. J. Am. Soc. Inf. Sci. Technol. 53(2), 162–171 (2002)CrossRefGoogle Scholar
  34. 34.
    Kramer-Smyth, J., Nishigaki, M., Anglade, T.: ArchivesZ: Visualizing archival collections. http://archivesz.com/ArchivesZ.pdf (2007)
  35. 35.
    Krzywinski, M., Schein, J., Birol, İ., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A.: Circos: an information aesthetic for comparative genomics. Genome Res. 19(9), 1639–1645 (2009)CrossRefGoogle Scholar
  36. 36.
    Kumar, R., Tomkins, A.: A characterization of online browsing behavior. In: Proceedings of the 19th International World Wide Web Conference, WWW ’10, pp. 561–570. ACM, USA (2010)Google Scholar
  37. 37.
    Liu, H., Kešelj, V.: Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users’ future requests. Data Knowl. Eng. 61(2), 304–330 (2007)CrossRefGoogle Scholar
  38. 38.
    Markov, Z., Larose, D.T.: Data mining the web: uncovering patterns in wWeb content, structure, and usage. Wiley, New York (2007)CrossRefGoogle Scholar
  39. 39.
    Negulescu, K.C.: Web archiving @ the Internet Archive. In: Presentation at the 2010 Digital Preservation Partners Meeting, http://www.digitalpreservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.ppt (2010)
  40. 40.
    Nelson, M.L., Allen, B.D.: Object persistence and availability in digital libraries. D-Lib Mag. 8(1) (2002).10.1045/january2002-nelson
  41. 41.
    Nithya, P., Sumathi, P.: Novel pre-processing technique for web log mining by removing global noise, cookies and web robots. Int. J. Comput. Appl. 53(17), 1–6 (2012)Google Scholar
  42. 42.
    Omodei, M.: Trends in use of Pandora Archive. International Internet Preservation Consortium. http://netpreserve.org/sites/default/files/resources/IIPC-GA-NLA-presentation_m.pdf (2012)
  43. 43.
    Padia, K., AlNoamany, Y., Weigle, M.C.: Visualizing digital collections at Archive-It. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’12, pp. 15–18. ACM, USA (2012)Google Scholar
  44. 44.
    Reddy, K.S., Varma, G.P.S., Babu, I.R.: Preprocessing the Web Server Logs: an illustrative approach for effective usage mining. ACM SIGSOFT Softw. Eng. Notes 37(3), 1–5 (2012)Google Scholar
  45. 45.
    Reisinger, D.: Netflix gobbles a third of peak Internet traffic in North America. CNET, http://news.cnet.com/8301-1023_3-57546405-93/netflix-gobbles-a-third-of-peak-internet-traffic-in-north-america/ (2012)
  46. 46.
    Rossi, A.: Fixing broken links on the Internet | Internet Archive Blogs. https://blog.archive.org/2013/10/25/fixing-broken-links/ (2013)
  47. 47.
    SalahEldeen, H.M., Nelson, M.L.: Carbon dating the web: estimating the age of web resources. In: Proceedings of 3rd Temporal Web Analytics Workshop, TempWeb ’13, pp. 1075–1082 (2013)Google Scholar
  48. 48.
    Sanderson, R., Phillips, M., Van de Sompel, H.: Analyzing the Persistence of referenced web resources with Memento. Tech. Rep. arXiv:1105.3459 (2011)
  49. 49.
    Shuyo, N.: Language Detection Library - 99% over precision for 49 languages. http://www.slideshare.net/shuyo/language-detection-library-for-java (2010)
  50. 50.
    Shuyo, N.: Language Detection Library for Java. http://code.google.com/p/language-detection/ (2012)
  51. 51.
    Silva, A.J.C., Gonçalves, M.A., Laender, A.H.F., Modesto, M.A.B., Cristo, M., Ziviani, N.: Finding what is missing from a digital library: a case study in the computer science field. Inf. Process. Manage. 45(3), 380–391 (2009)CrossRefGoogle Scholar
  52. 52.
    Smith, A.: Home broadband 2010. Technical report, Pew Internet & American Life Project, An initiative of the Pew Research Center (2010)Google Scholar
  53. 53.
    Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the evaluation of session reconstruction heuristics in web-usage analysis. INFORMS J. Comput. 15(2), 171–190 (2003)CrossRefMATHGoogle Scholar
  54. 54.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.N.: Web usage mining: discovery and applications of usage patterns from Web data. ACM SIGKDD Explor. Newslett. 1(2), 12 (2000). doi:10.1145/846183.846188
  55. 55.
    Stassopoulou, A., Dikaiakos, M.D.: Web robot detection: a probabilistic reasoning approach. Comput. Netw. 53(3), 265–278 (2009)Google Scholar
  56. 56.
    Streitfeld, A.: Internet Archive will shield visitors - NYTimes.com. http://bits.blogs.nytimes.com/2013/10/24/internet-archive-will-shield-visitors/ (2013)
  57. 57.
    Tan, P.N., Kumar, V.: Discovery of web robot sessions based on their navigational patterns. Data Min. Knowl. Discov. 6(1), 9–35 (2002)Google Scholar
  58. 58.
    Tanasa, D., Trousse, B.: Advanced data preprocessing for intersites Web usage mining. IEEE Intell. Syst. 19(2), 59–65 (2004)CrossRefGoogle Scholar
  59. 59.
    Teddlie, C., Yu, F.: Mixed methods sampling: a typology with examples. J. Mixed Methods Res. 1(1), 77–100 (2007)CrossRefGoogle Scholar
  60. 60.
    Thelwall, M., Vaughan, L.: A fair history of the Web? Examining country balance in the Internet Archive. Libr. Inf. Sci. Res. 26(2), 162–176 (2004)CrossRefGoogle Scholar
  61. 61.
    Tofel, B.: Wayback for accessing Web Archives. In: Proceedings of International Web Archiving Workshop, IWAW (2007)Google Scholar
  62. 62.
    Tongco, M., Dolores, C.: Purposive sampling as a tool for informant selection. Ethnobot. Res. Appl. 5, 147–158 (2008)Google Scholar
  63. 63.
    Van de Sompel, H., Nelson, M.L., Sanderson, R.: RFC 7089—HTTP framework for time-based access to resource states—Memento. http://tools.ietf.org/html/rfc7089 (2013)
  64. 64.
    Van de Sompel, H., Nelson, M.L., Sanderson, R., Balakireva, L.L., Ainsworth, S., Shankar, H.: Memento: Time Travel for the Web. Tech. Rep. arXiv:0911.1112 (2009)
  65. 65.
    Van Ryzin, G.G.: Cluster analysis as a basis for purposive sampling of projects in case study evaluations. Am. J. Eval. 16(2), 109–119 (1995)CrossRefGoogle Scholar
  66. 66.
    Wasserman, T.: Netflix takes up 32.7% of Internet bandwidth. Mashable, http://mashable.com/2011/10/27/netflix-takes-up-32-7-of-internet-bandwidth-study/ (2011)
  67. 67.
    Whitelaw, M.: Exploring archival collections with interactive visualisation. In: Proceedings of E-Research Australasia Conference (2009)Google Scholar
  68. 68.
    Zhuang, Z., Wagle, R., Giles, C.: What’s there and what’s not? Focused crawling for missing documents in digital libraries. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’05, pp. 301–310 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yasmin AlNoamany
    • 1
  • Ahmed AlSum
    • 1
  • Michele C. Weigle
    • 1
  • Michael L. Nelson
    • 1
  1. 1.Department of Computer ScienceOld Dominion UniversityNorfolkUSA

Personalised recommendations