Computational foundations for personalizing instruction with digital libraries

  • Sebastian de la ChicaEmail author
  • Faisal Ahmad
  • Tamara Sumner
  • James H. Martin
  • Kirsten Butcher
Regular Paper


This paper describes our progress towards automating adaptive personalized instruction based on student conceptual understandings using digital libraries. The reported approach merges conversational learning theory with advances in natural language processing to enable personalized pedagogical interactions. Multi-document summarization techniques serve as the computational basis to process digital library resources and automatically construct a rich domain model on earthquakes and plate tectonics for high school age learners. Shallow semantic analysis and graph-based techniques are used to computationally diagnose student understandings that enable conceptual personalizations integrating digital library resources. The evaluation of the implemented algorithms indicates that digital libraries may serve as knowledge platforms to support the automated construction of rich domain models and the diagnosis of student conceptual understandings. Furthermore, this approach introduces a novel and effective alternative to prior work in adaptive learning environments in terms of scalability and portability, thus tackling important challenges associated with supporting personalized instruction using digital libraries.


Educational digital library Personalization tools Natural language processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abidi S.S.R., Chong Y.H and Zeng Y. (2006). Generating customized yet factually consistent information: a constraint satisfaction approach. Int. J. Digit. Libr. 6(3): 247–259 CrossRefGoogle Scholar
  2. 2.
    Ahmad, F., de la Chica, S., Butcher, K., Sumner, T., Martin, J.H.: Towards automatic conceptual personalization tools. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, Vancouver, British Columbia, Canada, 2007, pp. 452–461 (2007)Google Scholar
  3. 3.
    Bransford J.D., Brown A.L., Cocking R.R. (Eds.) (2000). How People Learn: Brain, Mind, Experience and School. National Academy Press, London Google Scholar
  4. 4.
    Burrows, C.: Earth Science Vocabulary. (2007). Accessed 1 January 2007
  5. 5.
    Callan, J., Smeaton, A., Beaulieu, M., Borlund, P., Brusilovsky, P., Chalmers, M., Lynch, C., Riedl, J., Smyth, B., Straccia, U., Toms, E.: Personalisation and recommender systems in digital libraries. Joint NSF-EU DELOS Working Group (2003)Google Scholar
  6. 6.
    Cañas, A.J., Valerio, A., Lalinde-Pulido, J., Carvalho, M., Arguedas, M.: Using WordNet for word sense disambiguation to support concept map construction. In: Proceedings of the String Processing and Information Retrieval 10th International Symposium, SPIRE 2003, Manaus, Brazil, 2003, pp. 350–359 (2003)Google Scholar
  7. 7.
    Chang K.E., Sung Y.T. and Chen S.F. (2001). Learning through computer-based concept mapping with scaffolding aid. J. Comput. Assist. Lear. 17(1): 21–33 CrossRefGoogle Scholar
  8. 8.
    Chi M.T.H., de Leeuw N., Chiu M.-H. and LaVancher C. (1994). Eliciting self-explanations improves understanding. Cogn. Sci. 18(3): 439–477 Google Scholar
  9. 9.
    Conlon, T.: But Is Our Concept Map Any Good?: classroom experiences with the reasonable fallible analyser. In: Proceedings of the Second International Conference on Concept Mapping, San José, Costa Rica, 2006 (2006)Google Scholar
  10. 10.
    de la Chica, S., Ahmad, F., Martin, J.H., Sumner, T.R.: Supporting science understanding through a customized learning service for concept knowledge. In: Proceedings of the Combined Workshop on Language-Enabled Educational Technology and Development and Evaluation of Robust Spoken Dialogue Systems, 17th European Conference on Artificial Intelligence, Riva del Garda, Italy, 2006, pp. 9–16 (2006)Google Scholar
  11. 11.
    Denning, P.J.: The ACM digital library goes live. In: Commun. ACM pp. 28–29 (1997)Google Scholar
  12. 12.
    Fellbaum C. (1998). WordNet: An Electronic Lexical Database. The MIT Press, Cambridge zbMATHGoogle Scholar
  13. 13.
    Geisler, G., McArthur, D., Giersch, S.: Developing recommendation services for a digital library with uncertain and changing data. In: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, Virginia, 2001, pp. 199–200 (2001)Google Scholar
  14. 14.
    Gouli, E., Gogoulou, A., Papanikalaou, K., Grigoriadou, M.: Compass: an adaptive web-based concept map assessment tool. In: Proceedings of the first international Conference on Concept Mapping, (Pamplona, Spain, 2004) (2004)Google Scholar
  15. 15.
    Graesser A.C., Lu S., Jackson G.T., Mitchell H.H., Ventura M., Olney A. and Louwerse M.M. (2004). AutoTutor: A tutor with dialogue in natural language. Behav. Res. Methods Instrum. Comput. 36(2): 180–192 Google Scholar
  16. 16.
    Hall R.H., Hall M.A. and Saling C.B. (1999). The effects of graphical postorganization strategies on learning from knowledge maps. Journal of Experimental Education 67(2): 101–112 CrossRefGoogle Scholar
  17. 17.
    Hill, L.L.: Core elements of digital gazetteers: placenames, categories, and footprints. In: Proceedings of the 4th European Conference on Digital Libraries, Lisbon, Portugal, 2000, pp. 280–290 (2000)Google Scholar
  18. 18.
    Holley C.D. and Dansereau D.F. (1984). Spatial Learning Strategies: Techniques, Applications and Related Issues. Academic Press, Orlando Google Scholar
  19. 19.
    Jonassen D.H. and Grabowski B.L. (1993). Handbook of Individual Differences, Learning and Instruction. Lawrence Erlbaum Associates, Hillsdale Google Scholar
  20. 20.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, Upper Saddle River (2000)Google Scholar
  21. 21.
    Koedinger K.R., Anderson J.R., Hadley W.H. and Mark M.A. (1997). Intelligent tutoring goes to school in the big city. Int. J. Artif. Intell. Educ. 8: 30–43 Google Scholar
  22. 22.
    Kornilakis, H., Papanikolaou, K.A., Gouli, E., Grigoriadu, M.: Using natural language generation to support interactive concept mapping. In: Proceedings of the 3rd Hellenic Conference on Artificial Intelligence, Methods and Applications of Artificial Intelligence, Samos Island, Greece, 2004 (2004)Google Scholar
  23. 23.
    Lagoze, C., Krafft, D., Cornwell, T., Eckstrom, D., Jesuroga, S., Wilper, C.: Representing contextualized information in the NSDL. In: Proceedings of the 10th European Conference on Digital Libraries (ECDL 2006), Alicante, Spain, 2006, pp. 329–340 (2006)Google Scholar
  24. 24.
    Landauer T.K., Foltz P.W. and Laham D. (1998). An introduction to latent semantic analysis. Discourse Process. 25: 259–284 CrossRefGoogle Scholar
  25. 25.
    Laurillard D. (1993). Rethinking University Teaching: A Framework for the Effective Use of Educational Technology. Routledge, London New York Google Scholar
  26. 26.
    Lawrence S., Lee Giles C. and Bollacker K. (1999). Digital libraries and autonomous citation indexing. IEEE Comput. 32(6): 67–71 Google Scholar
  27. 27.
    Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceedings of the Workshop on Text Summarization Branches Out, Barcelona, Spain, 2004, (2004)Google Scholar
  28. 28.
    MacCartney, B., Grenager, T., de Marneffe, M.-C., Cer, D., Manning, C.D.: Learning to recognize features of valid textual entailments. In: Proceedings of the Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, New York, New York, 2006, pp. 41–48 (2006)Google Scholar
  29. 29.
    McKeown, K.R., Elhadad, N., Hatzivassiloglou, V.: Leveraging a common representation for personalized search and summarization in a medical digital library. In Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries, Houston, Texas, 2003, pp. 159–170 (2003)Google Scholar
  30. 30.
    National Research Council (1996). National Science Education Standards. National Academy Press, Washington DC Google Scholar
  31. 31.
    O’Donnell A.M., Dansereau D.F. and Hall R.H. (2002). Knowledge maps as scaffolds for cognitive processing. Educ. Psychol. Rev. 14(1): 71–86 CrossRefGoogle Scholar
  32. 32.
    Pask G. (1975). Conversation, Cognition and Learning: A Cybernetic Theory and Methodology. Elsevier, Amsterdam Google Scholar
  33. 33.
    Project 2061: Atlas of science literacy. American Association for the Advancement of Science and the National Science Teachers Association, Washington DC (2001)Google Scholar
  34. 34.
    Project 2061: Benchmarks for Science Literacy. Oxford University Press, New York (1993)Google Scholar
  35. 35.
    Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi, A., Dimitrov, S., Drabek, E., Hakim, A., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H., Teufel, S., Toper, M., Winkel, A., Zhang, Z.: MEAD—a platform for multidocument multilingual text summarization. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, Portugal, 2004, (2004)Google Scholar
  36. 36.
    Recker, M., Wiley, D.: Instructional Architect. (2001). Accessed 1 January 2007
  37. 37.
    Ritter S., Anderson J., Cytrynowicz M. and Medvedeva O. (1998). Authoring content in the PAT algebra tutor. J. Interact. Media Educ. 98: 10 Google Scholar
  38. 38.
    Scott B. (2001). Conversation theory: a constructivist, dialogical approach to educational technology. Cybern. Hum. Knowing 8(4): 25–46 Google Scholar
  39. 39.
    Smeaton A.F. and Callan J. (2005). Personalisation and recommender systems in digital libraries. Int. J. Digit. Libr. 5(4): 299–308 CrossRefGoogle Scholar
  40. 40.
    Smeaton, A.F., Murphy, N., O’Connor, N.E., Marlow, S., Lee, H., McDonald, K., Browne, P., Ye, J.: The Físchlár digital video system: a digital library of broadcast TV programmes. In: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, Virginia, 2001, pp. 312–313 (2001)Google Scholar
  41. 41.
    Sumner T., Ahmad F., Bhushan S., Gu Q., Molina F., Willard S., Wright M., Davis L. and Janee G. (2005). Linking learning goals and educational resources through interactive concept map visualizations. Int. J. Digit. Libr. 5(1): 18–24 Google Scholar
  42. 42.
    Susarla, S.C., Adcock, A., Van Eck, R., Moreno, K., Graesser, A.: Development and evaluation of a lesson authoring tool for AutoTutor. In: Proceedings of the 11th International Conference on Artificial Intelligence in Education, Sydney, Australia, 2003, pp. 378–387 (2003)Google Scholar
  43. 43.
    Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing digital libraries with TechLens+. In: Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, Tucson, Arizona, 2004, pp. 228–236 (2004)Google Scholar
  44. 44.
    US Department of Education—National Center for Education Statistics: The Condition of Education 2002. US Government Printing Office, Washington DC (2002)Google Scholar
  45. 45.
    Wade-Stein D. and Kintsch E. (2004). Summary street: interactive computer support for writing. Cogn. Instr. 22(3): 333–362 CrossRefGoogle Scholar
  46. 46.
    Woolf B.P. (1992). Towards a computational model of tutoring. In: Jones, M. and Winne, P.H. (eds) Adaptive Learning Environments: Foundations and Frontiers., pp 209–231. Springer, Berlin Google Scholar
  47. 47.
    Yilmazel, O., Finneran, C.M., Liddy, E.D.: Metaextract: an NLP system to automatically assign metadata. In: Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, Tucson, Arizona, 2004, pp. 241–242 (2004)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sebastian de la Chica
    • 1
    Email author
  • Faisal Ahmad
    • 1
  • Tamara Sumner
    • 1
  • James H. Martin
    • 1
  • Kirsten Butcher
    • 2
  1. 1.Institute of Cognitive Science, Department of Computer ScienceUniversity of ColoradoBoulderUSA
  2. 2.Learning Research and Development CenterUniversity of PittsburghPittsburghUSA

Personalised recommendations