International Journal on Digital Libraries

, Volume 6, Issue 1, pp 39–54 | Cite as

An experimental effectiveness comparison of methods for 3D similarity search

  • Benjamin Bustos
  • Daniel Keim
  • Dietmar Saupe
  • Tobias Schreck
  • Dejan Vranić
Regular Paper

Abstract

Methods for content-based similarity search are fundamental for managing large multimedia repositories, as they make it possible to conduct queries for similar content, and to organize the repositories into classes of similar objects. 3D objects are an important type of multimedia data with many promising application possibilities. Defining the aspects that constitute the similarity among 3D objects, and designing algorithms that implement such similarity definitions is a difficult problem. Over the last few years, a strong interest in 3D similarity search has arisen, and a growing number of competing algorithms for the retrieval of 3D objects have been proposed. The contributions of this paper are to survey a body of recently proposed methods for 3D similarity search, to organize them along a descriptor extraction process model, and to present an extensive experimental effectiveness and efficiency evaluation of these methods, using several 3D databases.

Keywords

3D model retrieval Feature based similarity search methods Retrieval effectiveness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Veltkamp, R., Tanase, M.: Content-based image retrieval systems: A survey. Technical Report UU-CS-2000-34, University Utrecht (2000)Google Scholar
  2. 2.
    Novotni, M., Klein, R.: A geometric approach to 3D object comparison. In: Proceedings of International Conference on Shape Modeling and Applications, pp. 167–175. IEEE CS Press (2001)Google Scholar
  3. 3.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPHapos;1), pp. 203–212. ACM Press (2001)Google Scholar
  4. 4.
    Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Proceedings of International Conference on Shape Modeling and Applications (SMIapos;3), pp. 130–142. IEEE CS Press (2003)Google Scholar
  5. 5.
    Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods. In: Proceedings of International Conference on Shape Modeling and Applications (SMIapos;4), pp. 145–156. IEEE CS Press (2004)Google Scholar
  6. 6.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  7. 7.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGPapos;3), pp. 156–164. Eurographics Association (2003)Google Scholar
  8. 8.
    Vranić, D.: 3D Model Retrieval. PhD thesis, University of Leipzig (2004)Google Scholar
  9. 9.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  10. 10.
    Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose object recognition in 3D volume data sets using gray-scale invariants—classification of airborne pollen-grains recorded with a confocal laser scanning microscope. In: Proceedings of International Conference on Pattern Recognition (2002)Google Scholar
  11. 11.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graphics 22(1), 83–105 (2003)CrossRefGoogle Scholar
  12. 12.
    Novotni, M., Klein, R.: Shape retrieval using 3d zernike descriptors. Comp. Aided Design 36(11), 1047–1062 (2004)Google Scholar
  13. 13.
    Paquet, E., Murching, M., Naveen, T., Tabatabai, A., Rioux, M.: Description of shape information for 2-D and 3-D objects. Signal Process Image Commun. 16:103–122 (2000)Google Scholar
  14. 14.
    Vranić, D., Saupe, D., Richter, J.: Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In: Proceedings of IEEE 4th Workshop on Multimedia Signal Processing, pp. 293–298 (2001)Google Scholar
  15. 15.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Shape matching and anisotropy. ACM Trans. Graphics 23(3), 623–629 August (2004)CrossRefGoogle Scholar
  16. 16.
    Tangelder, J., Veltkamp, R.: Polyhedral model retrieval using weighted point sets. Int. J. Image Graphics 3(1), 209–229, (2003)Google Scholar
  17. 17.
    Vranić, D.: An improvement of rotation invariant 3D-shape descriptor based on functions on concentric spheres. In: Proceedings of IEEE International Conference on Image Processing (ICIPapos;3), Volume III, pp. 757–760 (2003)Google Scholar
  18. 18.
    Faloutsos, C.: Searching Multimedia Databases by Content. Kluwer, Dordrecht (1996)Google Scholar
  19. 19.
    Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., Petkovic, D., Yanker, P., Faloutsos, C., Taubin, G.: The QBIC Project: Querying images by content, Using color, Texture, and Shape. In: Proceedings of Storage and Retrieval for Image and Video Databases (SPIE), pp. 173–187 (1993)Google Scholar
  20. 20.
    Seidl, T., Kriegel, H.-P.: Efficient user-adaptable similarity search in large multimedia databases. In: Proceedings of 23rd International Conference on Very Large Databases (VLDBapos;7), pp. 506–515. Morgan Kaufmann (1997)Google Scholar
  21. 21.
    Kato, T., Suzuki, M., Otsu, N.: A similarity retrieval of 3D polygonal models using rotation invariant shape descriptors. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 2946–2952 (2000)Google Scholar
  22. 22.
    Vranić, D., Saupe, D.: 3D shape descriptor based on 3D Fourier transform. In: Proceedings of EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services (ECMCSapos;1), pp. 271–274. Comenius University (2001)Google Scholar
  23. 23.
    Heczko, M., Keim, D., Saupe, D., Vranić, D.: Methods for similarity search on 3D databases. Datenbank-Spektrum 2(2), 54–63 (2002) in GermanGoogle Scholar
  24. 24.
    Keim, D.: Efficient geometry-based similarity search of 3D spatial databases. In: Proceedings of ACM International Conference on Management of Data (SIGMODapos;9), pp. 419–430. ACM Press (1999)Google Scholar
  25. 25.
    Paquet, E., Rioux, M.: Nefertiti: A tool for 3-D shape databases management. Image and Vision Computing 108, 387–393 (2000)Google Scholar
  26. 26.
    Healy, D., Rockmore, D., Kostelec, P., Moore, S.: FFTs for the 2-sphere - Improvements and variations. Journal of Fourier Analysis and Applications 9(4), 341–385 (2003)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Vranić, D., Saupe, D.: 3D model retrieval with spherical harmonics and moments. In: Proceedings of DAGM-Symposium, LNCS 2191, pp. 392–397. Springer, (2001)Google Scholar
  28. 28.
    Ip, C., Lapadat, D., Sieger, L., Regli, W.: Using shape distributions to compare solid models. In: Proceedings of 7th ACM Symposium on Solid Modeling and Applications, pp. 273–280. ACM Press (2002)Google Scholar
  29. 29.
    Ohbuchi, R., Minamitani, T., Takei, T.: Shape similarity search of 3D models by using enhanced shape functions. In: Proceedings of Theory and Practice in Computer Graphics, pp. 97–104 (2003)Google Scholar
  30. 30.
    Zaharia, T., Prêteux, F.: 3D shape-based retrieval within the MPEG-7 framework. In: Proceedings of SPIE Conference on Nonlinear Image Processing and Pattern Analysis XII, vol. 4304, pp. 133–145 (2001)Google Scholar
  31. 31.
    MPEG-7 Video Group. MPEG-7 visual part of experimentation model. V.9. ISO/IEC N3914, MPEG-7, Pisa, January (2001)Google Scholar
  32. 32.
    Vranić, D., Saupe, D.: Description of 3D-shape using a complex function on the sphere. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICMEapos;2), pp. 177–180 (2002)Google Scholar
  33. 33.
    Vranić, D., Saupe, D.: 3D model retrieval. In: Proceedings of Spring Conference on Computer Graphics and its Applications (SCCGapos;0), pp. 89–93. Comenius University (2000)Google Scholar
  34. 34.
    US National Institute of Standards and technology. Text retrieval conference, http://trec.nist.gov/.
  35. 35.
    Blake, C., Merz, C.: UCI repository of machine learning databases (1998)Google Scholar
  36. 36.
    Ohbuchi, R., Otagiri, T., Ibato, M., Takei, T.: Shape-similarity search of three-dimensional models using parameterized statistics. In: Proceedings of 10th Pacific Conference on Computer Graphics and Applications, pp. 265–274 (2002)Google Scholar
  37. 37.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of International Conference on Shape Modeling and Applications (SMIapos;4), pp. 167–178. IEEE CS Press (2004)Google Scholar
  38. 38.
    Konstanz 3D Model Database. http://merkur01.inf.uni-konstanz.de/CCCC/.
  39. 39.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading, MA (1999)Google Scholar
  40. 40.
    van Rijsbergen, C.: Information Retrieval, 2nd ed. Butterworths, London, (1979)Google Scholar
  41. 41.
    Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On visual similarity based 3D model retrieval. In: Proceedings of Eurographics 2003, volume 22(3) of Computer Graphics Forum, pp. 223–232. Blackwell, New York (2003)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Benjamin Bustos
    • 1
  • Daniel Keim
    • 1
  • Dietmar Saupe
    • 1
  • Tobias Schreck
    • 1
  • Dejan Vranić
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations