International Journal on Digital Libraries

, Volume 5, Issue 4, pp 275–286 | Cite as

Digital imagery for significant cultural and historical materials

An emerging research field bridging people, culture, and technologies
  • Ching-chih Chen
  • Howard D. Wactlar
  • James Z. Wang
  • Kevin Kiernan
Regular contribution

Abstract

Digital imagery for significant cultural and historical materials is an emerging research field that bridges people, culture, and technologies. In this paper, we first discuss the great importance of this field. Then we focus on its four interrelated subareas: (1) creation and preservation, (2) retrieval, (3) presentation and usability, and (4) applications and use. We propose several mechanisms to encourage collaboration and argue that the field has high potential impact on our digital society. Finally, we make specific recommendations on what to pursue in this field.

Keywords

Imaging of cultural heritages Physical and descriptive content-based retrieval Presentation and usability Creation and preservation International collaboration  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amato G, Rabitti F, Savino P, Zezula P (2003) Region proximity in metric spaces and its use for approximate similarity search. ACM Trans Inf Syst 21(2):192–227Google Scholar
  2. 2.
    Baglioni P, Giorgi R, Chen C-c (2003) Nanoparticle technology saves cultural relics: potential for a multimedia digital library. In: Online Proc. of DELOS/NSF workshop on multimedia contents in digital libraries, Crete, GreeceGoogle Scholar
  3. 3.
    Bahl LR, Jelinek F, Mercer RL (1983) A maximum likelihood approach to continuous speech recognition. IEEE Trans Pattern Anal Mach Intell 5(2):179–190Google Scholar
  4. 4.
    Barnard K, Duygulu P, de Freitas N, Forsyth DA, Blei DM, Jordan MI (2003) Matching words and pictures. J Mach Learn Res 3:1107–1135Google Scholar
  5. 5.
    Beardsley P, Torr P, Zisserman A (1996) 3D model acquisition from extended image sequences. In: Proc. European conference on computer vision, 2:683–695Google Scholar
  6. 6.
    Bolt R (1980) Put-that-there: voice and gesture at the graphic interface. Comput Graph 14(3):262–270Google Scholar
  7. 7.
    Boujemaa N, Ferecatu M, Gouet V (2002) Approximate search vs precise search by visual content in cultural heritage image databases. In: Proc. ACM Multimedia, MIR workshop, FranceGoogle Scholar
  8. 8.
    Boujemaa N, Fauqueur J, Gouet V (2004) What’s beyond query by example? In: Shapiro L, Kriegel HP, Veltkamp R (eds) Trends and advances in content-based image and video retrieval. Lecture notes in computer science, vol . Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698Google Scholar
  10. 10.
    Chang Y-C, Bergman LD, Castelli V, Li C-S, Lo M-L, Smith JR (2000) The Onion technique: indexing for linear optimization queries. In: Proc. ACM SIGMODGoogle Scholar
  11. 11.
    Chellappa R, Chatterjee S (1985) Classification of textures using Gaussian Markov random fields. IEEE Trans Acoust Speech Signal Process 33(4):959–963Google Scholar
  12. 12.
    Chen C-c (2003) Designing multimedia digital libraries with content development and management: technology potential and challenges. In: Online Proc. of DELOS/NSF workshop on multimedia contents in digital libraries, Crete, GreeceGoogle Scholar
  13. 13.
    Chen H, Martinez J, Ng TD, Schatz BR (1997) A concept space approach to addressing the vocabulary problem in scientific information retrieval: an experiment on the worm community system. J Am Soc Inf Sci 48(1):17–31Google Scholar
  14. 14.
    CNN (2002) Amsterdam, Netherlands – A pair of paintings by the Dutch master Vincent van Gogh have been stolen from the Van Gogh Museum in Amsterdam. CNN.com, 7 December 2002Google Scholar
  15. 15.
    Del Bimbo A (1999) Visual information retrieval. Morgan Kauffman, San FranciscoGoogle Scholar
  16. 16.
    Fablet R, Bouthemy P, Perez P (2002) Non-parametric motion characterization using causal probabilistic models for video indexing and retrieval. IEEE Trans Image Process 11(4):393–407Google Scholar
  17. 17.
    Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741Google Scholar
  18. 18.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proc. ACM SIGMOD, Boston, pp 47–57Google Scholar
  19. 19.
    Jain A, Farrokhnia F (1991) Unsupervised texture segmentation using gabor filters. Pattern Recog 24(12):1167–1186Google Scholar
  20. 20.
    Kiernan K, Seales B, Griffioen J (2002) The reappearances of St. Basil the Great in British Library MS Cotton Otho B. x. Comput Humanit 36:7–26. http://www.digitalatheneum.orgGoogle Scholar
  21. 21.
    Kiernan K (2004) Digital facsimiles in editing: some guidelines for editors of image-based scholarly editions. In: Unsworth J, Burnard L, O’Keeffe K (eds) Electronic textual editing. http://www.tei-c.org/Activities/ETE/Kiernan/Google Scholar
  22. 22.
    Le Saux B, Boujemaa N (2002) Unsupervised robust clustering for image database categorization. In: Proc. IEEE-IAPR international conference on pattern recognition, Quebec City, 1:259–262Google Scholar
  23. 23.
    Li C-S, Chang Y-C, Smith JR, Bergman LD, Castelli V (2000) Framework for efficient processing of content-based fuzzy Cartesian queries. In: Proc. SPIE – Storage and Retrieval SystemGoogle Scholar
  24. 24.
    Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(9):1075–1088Google Scholar
  25. 25.
    Li J, Wang JZ (2004) Studying digital imagery of ancient paintings by mixtures of stochastic models. IEEE Trans Image Process 13(3):340–353Google Scholar
  26. 26.
    Li J, Gray RM (2000) Image segmentation and compression using hidden Markov models. Kluwer, DordrechtGoogle Scholar
  27. 27.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693Google Scholar
  28. 28.
    Niblack W, Barber R, Equitz W, Flickner M, Glasman E, Pektovic D, Yanker P, Faloutsos C, Taubin G (1993) The QBIC project: querying images by content using color, texture, and shape. Storage and retrieval for image and video databases. Proc SPIE 1908:173–181Google Scholar
  29. 29.
    Pappas, M, Angelopoulos G, Kadoglou A, Pitas I (1999) A database management system for digital archiving of paintings and works of art. Comput History Art 8(2):15–35Google Scholar
  30. 30.
    Pavlovic VI, Sharma R, Huang TS (1997) Visual interpretation of hand gestures for human computer interaction: a review. IEEE Trans Pattern Anal Mach Intell 19(7):677–695Google Scholar
  31. 31.
    PITAC, US President’s Information Technology Advisory Committee – Panel on Digital Libraries (2001) Digital libraries: universal access to human knowledge. Report to the President. US National Coordination Office for Information Technology Research and Development, Washington, DCGoogle Scholar
  32. 32.
    Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286Google Scholar
  33. 33.
    Said A, Pearlman WA (1996) A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250Google Scholar
  34. 34.
    Schatz BR, Chen H (1996) Building large-scale digital libraries. IEEE Comput 29(5):22–27Google Scholar
  35. 35.
    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval: the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380Google Scholar
  36. 36.
    Smith JR, Li C-S (2000) Adaptive synthesis in progressive retrieval of audio-visual data. In: Proc. international conference on multimedia and expo (ICME), New YorkGoogle Scholar
  37. 37.
    Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963Google Scholar
  38. 38.
    Wang JZ, Li J, Chen C-c (2002) Interdisciplinary research to advance digital imagery indexing and retrieval technologies for Asian art and cultural heritages. In: Proc. ACM Multimedia, MIR workshop, FranceGoogle Scholar
  39. 39.
    Wactlar HD, Chen C-c (2002) Enhanced perspectives for historical and cultural documentaries using InforMedia technologies. In: Proc. ACM/IEEE joint conference on digital libraries. Portland, OR, pp 338–339Google Scholar
  40. 40.
    Wactlar HD, Hauptmann A, Gong Y, Christel M (1999) Lessons learned from the creation and deployment of a terabyte digital video library. IEEE Comput 32(2):66–73Google Scholar
  41. 41.
    Wactlar HD, Olligschlaeger A, Hauptmann A, Christel M (2000) Complementary video and audio analysis for broadcast news archives. Commun ACM 43(2):42–47Google Scholar
  42. 42.
    Zezula P, Savino P, Amato G, Rabitti F (1998) Approximate similarity retrieval with M-trees. Int J Very Large Data Bases 7(4):275–293Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ching-chih Chen
    • 1
  • Howard D. Wactlar
    • 2
  • James Z. Wang
    • 3
  • Kevin Kiernan
    • 4
  1. 1.Graduate School of Library and Information ScienceSimmons CollegeBostonUSA
  2. 2.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  3. 3.School of Information Sciences and TechnologyThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.College of Arts and SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations