Advertisement

Medical Molecular Morphology

, Volume 52, Issue 4, pp 226–234 | Cite as

Molecular association of FtsZ with the intrabacterial nanotransportation system for urease in Helicobacter pylori

  • Hong WuEmail author
  • Noritaka Iwai
  • Youichi Suzuki
  • Takashi Nakano
Original Paper
  • 98 Downloads

Abstract

Helicobacter pylori possesses intrabacterial nanotransportation system (ibNoTS) for transporting CagA, VacA, and urease within the bacterial cytoplasm, which is controlled by the extrabacterial environment. The route of ibNoTS for CagA is reported to be associated with the MreB filament, whereas the route of ibNoTS for urease is not yet known. In this study, we demonstrated by immunoelectron microscopy that urease along the route of ibNoTS localizes closely with the FtsZ filament in the bacterium. Supporting this, we found by enzyme immunoassay and co-immunoprecipitation analysis that urease interacted with FtsZ. These findings indicate that urease along the route of ibNoTS is closely associated with the FtsZ filament. Since these phenomena were not observed in ibNoTS for CagA, the route of ibNoTS for CagA is different from that of ibNoTS for urease. We propose that the route of ibNoTS for urease is associated with the FtsZ filament in H. pylori.

Keywords

Helicobacter pylori FtsZ Urease Intrabacterial nanotransportation system Immunoelectron microscopy 

Notes

Acknowledgements

We thank Mr. Yoshihiko Fujioka and Ms. Yukiko Takada of the Department of Microbiology and Infection Control, Osaka Medical College, for their technical help. We also thank Ms. Hiromi Norimitsu for her help in the preparation of the manuscript.

References

  1. 1.
    Hong W, Sano K, Morimatsu S, Scott DR, Weeks DL, Sachs G, Goto T, Mohan S, Harada F, Nakajima N, Nakano T (2003) Medium pH dependent redistribution of the urease of Helicobacter pylori. J Med Microbiol 52:211–216PubMedGoogle Scholar
  2. 2.
    Wu H, Nakano T, Daikoku E, Morita C, Kohno T, Lian HH, Sano K (2005) Intrabacterial proton-dependent CagA transport system in Helicobacter pylori. J Med Microbiol 54:1117–1125PubMedGoogle Scholar
  3. 3.
    Wu H, Nakano T, Matsuzaki Y, Ooi Y, Kohno T, Ishihara S, Sano K (2014) A new type of intrabacterial nanotransportation system for VacA in Helicobacter pylori. Med Mol Morphol 47:224–232PubMedGoogle Scholar
  4. 4.
    Greber UF (2005) Viral trafficking violations in axons: the herpesvirus case. PNAS 102:5639–5640PubMedGoogle Scholar
  5. 5.
    Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U (2007) Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein Kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem 282:37232–37243PubMedGoogle Scholar
  6. 6.
    Hehnly H, Stamnes M (2007) Regulating cytoskeleton-based vesicle motility. FEBS Lett 581:2112–2118PubMedPubMedCentralGoogle Scholar
  7. 7.
    Klann M, Koeppl H, Matthias Reuss M (2012) Spatial modeling of vesicle transport and the cytoskeleton: the challenge of hitting the right road. PLoS ONE 7:e29645PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P (1986) Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 149:91–106PubMedGoogle Scholar
  9. 9.
    Bucher D, Popple S, Baer M, Mikhail A, Gong YF, Whitaker C, Paoletti E, Judd A (1989) Antigenic analysis and intracellular localization with monoclonal antibodies. J Virol 63:3622–3633PubMedPubMedCentralGoogle Scholar
  10. 10.
    De BP, Burdsall AL, Banerjee AK (1993) Role of cellular Actin in human parainfluenza virus type 3 genome transcription. J Biol Chem 268:5703–5710PubMedGoogle Scholar
  11. 11.
    van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44PubMedGoogle Scholar
  12. 12.
    Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with divisions in Escherichia coli. Nature 354:161–164PubMedGoogle Scholar
  13. 13.
    Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–713PubMedGoogle Scholar
  14. 14.
    Wu H, Iwai N, Nakano T, Ooi Y, Ishihara S, Sano K (2015) Route of intrabacterial nanotransportation system for CagA in Helicobacter pylori. Med Mol Morphol 48:191–203PubMedGoogle Scholar
  15. 15.
    Nakano T, Aoki H, Wu H, Fujioka Y, Nakazawa E, Sano K (2012) Fine visualization of filamentous structures in the bacterial cytoplasm. J Microbiol Meth 90:60–64Google Scholar
  16. 16.
    Li Z, Trimble MJ, Brun YV, Jensen GJ (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sun SX, Jiang H (2011) Physics of bacterial morphogenesis. Microbiol Mol Biol Rev 75:543–565PubMedPubMedCentralGoogle Scholar
  18. 18.
    Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46PubMedGoogle Scholar
  19. 19.
    Buss J, Coltharp C, Huang T, Pohlmeyer C, Wang SC, Hatem C, Xiao J (2013) In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol Microbiol 89:1099–1120PubMedPubMedCentralGoogle Scholar
  20. 20.
    Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93:519–523PubMedGoogle Scholar
  21. 21.
    Thanedar S, Margolin W (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14:1167–1173PubMedPubMedCentralGoogle Scholar
  22. 22.
    Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation singlemolecule tracking. Biophys J 95:2009–2016PubMedPubMedCentralGoogle Scholar
  23. 23.
    Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871PubMedPubMedCentralGoogle Scholar
  24. 24.
    Souza Wd (2012) Prokaryotic cells: structural organisation of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 107:283–293PubMedGoogle Scholar
  25. 25.
    Specht M, Dempwolff F, Schätzle S, Thomann R, Waidner B (2013) Localization of FtsZ in Helicobacter pylori and consequences for cell division. J Bacteriol 195:1411–1420PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kamran M, Sinha S, Dubey P, Lynn AM, Dhar SK (2016) Identification of putative Z-ring-associated proteins, involved in cell division in human pathogenic bacteria Helicobacter pylori. FEBS Lett 590:2158–2171PubMedGoogle Scholar
  27. 27.
    Nishida Y, Takeuchi H, Morimoto N, Umeda A, Kadota Y, Kira M, Okazaki A, Matsumura Y, Sugiura T (2016) Intrinsic characteristics of Min proteins on the cell division of Helicobacter pylori. FEMS Microbiol Lett 363:fnw025PubMedGoogle Scholar
  28. 28.
    Hong W, Morimatsu S, Goto T, Sachs G, Scott DR, Weeks DL, Kohno T, Morita C, Nakano T, Fujioka Y, Sano K (2000) Contrast-enhanced immunoelectron microscopy for Helicobacter pylori. J Microbiol Meth 42:121–127Google Scholar
  29. 29.
    Wu H (2016) Optimum number of bacterial cells for examination of localization of intrabacterial nanotransportation system by semiquantitative immunoelectron microscopy. Bull OMC 62:19–23Google Scholar
  30. 30.
    McGowan CC, Cover TL, Blaser MJ (1996) Helicobacter pylori and gastric acid: biological and therapeutic implications. Gastroenterology 110:926–938PubMedGoogle Scholar
  31. 31.
    Covacci A, Telford JL, Giudice GD, Parsonnet J, Rappuoli R (1999) Helicobacter pylori virulence and genetic geography. Science 284:1328–1333PubMedGoogle Scholar
  32. 32.
    Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR, Naumann M, Meyer TF (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2:155–164PubMedGoogle Scholar
  33. 33.
    Backert S, Moese S, Selbach M, Brinkmann V, Meyer TF (2001) Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 42:631–644PubMedGoogle Scholar
  34. 34.
    Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G (1998) The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114:58–70PubMedGoogle Scholar
  35. 35.
    Skouloubris S, Thiberge JM, Labigne A, De Reuse H (1998) The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect Immun 66:4517–4521PubMedPubMedCentralGoogle Scholar
  36. 36.
    Aoki H, Wu H, Nakano T, Ooi Y, Daikoku E, Kohno K, Matsushita T, Sano K (2009) Nanotransportation system for cholera toxin in Vibrio cholerae O1. Med Mol Morphol 42:40–46PubMedGoogle Scholar
  37. 37.
    Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–485PubMedGoogle Scholar
  38. 38.
    Weeks DL, Sachs G (2001) Sites of pH regulation of the urea channel of Helicobacter pylori. Mol Microbiol 40:1249–1259PubMedGoogle Scholar
  39. 39.
    Mizote T, Yoshiyama H, Nakazawa T (1997) Urease-independent chemotactic responses of Helicobacter pylori to urea, urease inhibitors, and sodium bicarbonate. Infect Immun 65:1519–1521PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nakamura H, Yoshiyama H, Takeuchi H, Mizote T, Okita K, Nakazawa T (1998) Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect Immun 66:4832–4837PubMedPubMedCentralGoogle Scholar
  41. 41.
    Scott DR, Marcus EA, Wen Y, Oh J, Sachs G (2007) Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci USA 104:7235–7240PubMedGoogle Scholar
  42. 42.
    Shaevitz JW, Gitai Z (2010) The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2:a000364PubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2019

Authors and Affiliations

  1. 1.Project Team for Study of Nanotransportation System, Research & development CenterOsaka Medical CollegeOsakaJapan
  2. 2.Department of Microbiology and Infection ControlOsaka Medical CollegeOsakaJapan
  3. 3.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyKanagawaJapan

Personalised recommendations