Advertisement

Comparison of the characteristics of mesenchymal stem-like cells derived by integration-free induced pluripotent stem cells in different single-cell culture media under feeder-free conditions

  • Mamoru Ueda
  • Yoshiya HashimotoEmail author
  • Yoshitomo Honda
  • Shunsuke Baba
  • Shosuke Morita
Original Paper
  • 100 Downloads

Abstract

Generating mesenchymal stem-like cells (MSLCs) from induced pluripotent stem cells (iPSCs) can be a practical method for obtaining the sufficient cells for autologous tissue engineering. Single-cell culturing in specific medium and non-feeder cells is an alternative and promising strategy to overcome problems of embryo culture; however, little is known about how different culture media affect the proliferation and differentiation of MSLCs. We first derived MSLCs from iPSCs with non-integrating episomal plasmid vectors (hereafter 409B2 cells) using three different cell culture media, including single-cell culture medium in feeder-free condition: mTeSR1, DEF-CS500, or StemFit AK02N. The morphology of all MSLCs was completely altered to a fibroblastic morphology after four passages. Surface antigens CD29, CD44, CD73, CD90, but not CD34 and CD45, were expressed in all passages. RUNX2 was expressed in MSLCs cultured in all three feeder-free media, while SOX9 and PPARγ were expressed in MSLCs cultured in only DEF-CS500. MSLCs derived from DEF-CS500, which is a single-cell culture medium, grew at a slightly faster rate than those cultured in other media and expressed early-stage genes for tri-lineage differentiation. Taken together, these findings provide valuable information for generating MSLCs using single-cell culture methods.

Keywords

Mesenchymal stem-like cells Feeder-free conditions Induced pluripotent stem cells Human skin 

Notes

Acknowledgements

This study was supported by MEXT/JSPS KAKENHI Grant number 17K11770 and the Promotion and Mutual Aid Corporation for Private Schools of Japan, and supported by Osaka Dental University Research Funds (17-11).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Colter DC, Class R, DiGirolamo CM, Prockop DJ (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97:3213–3218CrossRefGoogle Scholar
  2. 2.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  3. 3.
    Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19CrossRefGoogle Scholar
  4. 4.
    Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105:2883–2888CrossRefGoogle Scholar
  5. 5.
    Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146CrossRefGoogle Scholar
  6. 6.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  7. 7.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  8. 8.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefGoogle Scholar
  9. 9.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  10. 10.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefGoogle Scholar
  11. 11.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  12. 12.
    Su RJ, Neises A, Zhang XB (2014) Generation of iPS cells from human peripheral blood mononuclear cells using episomal vectors. Methods Mol Biol.  https://doi.org/10.1007/7651_2014_139 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T, Iida K, Kunisada T, Shibata T, Yamanaka S, Tezuka K (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89:773–778CrossRefGoogle Scholar
  14. 14.
    Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, Matsumoto T, Yamanaka S, Yatani H (2010) Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 5:e12743CrossRefGoogle Scholar
  15. 15.
    Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46:438–447CrossRefGoogle Scholar
  16. 16.
    Miyoshi K, Tsuji D, Kudoh K, Satomura K, Muto T, Itoh K, Noma T (2010) Generation of human induced pluripotent stem cells from oral mucosa. J Biosci Bioeng 110:345–350CrossRefGoogle Scholar
  17. 17.
    Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M, Kubo Y, Hattori K, Saito S, Horimoto K (2010) Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285:29270–29278CrossRefGoogle Scholar
  18. 18.
    Hynes K, Menicanin D, Han J, Marino V, Mrozik K, Gronthos S, Bartold PM (2013) Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 92:833–839CrossRefGoogle Scholar
  19. 19.
    Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, Lam FFY, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121:1113–1123CrossRefGoogle Scholar
  20. 20.
    Raynaud CM, Halabi N, Elliott DA, Pasquier J, Elefanty AG, Stanley EG, Rafii A (2013) Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS One 8:e54524CrossRefGoogle Scholar
  21. 21.
    Zou L, Luo Y, Chen M, Wang G, Ding M, Petersen CC, Kang R, Dagnaes-Hansen F, Zeng Y, Lv N, Ma Q, Le DQ, Besenbacher F, Bolund L, Jensen TG, Kjems J, Pu WT, Bunger C (2013) A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep 3:2243CrossRefGoogle Scholar
  22. 22.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313CrossRefGoogle Scholar
  23. 23.
    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K-i (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412CrossRefGoogle Scholar
  24. 24.
    Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata K, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376:1038–1046CrossRefGoogle Scholar
  25. 25.
    Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594CrossRefGoogle Scholar
  26. 26.
    Rodríguez-Pizà I, Richaud-Patin Y, Vassena R, González F, Barrero MJ, Veiga A, Raya A, Belmonte JCI (2010) Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells 28:36–44PubMedGoogle Scholar
  27. 27.
    Takahashi K, Narita M, Yokura M, Ichisaka T, Yamanaka S (2009) Human induced pluripotent stem cells on autologous feeders. PLoS One 4:e8067CrossRefGoogle Scholar
  28. 28.
    Umezaki Y, Hashimoto Y, Nishishita N, Kawamata S, Baba S (2015) Human gingival integration-free iPSCs; a source for MSC-like cells. Int J Mol Sci 16:13633–13648CrossRefGoogle Scholar
  29. 29.
    Chen Y-H, Pruett-Miller SM (2018) Improving single-cell cloning workflow for gene editing in human pluripotent stem cells. Stem Cell Res 31:186–192CrossRefGoogle Scholar
  30. 30.
    Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362CrossRefGoogle Scholar
  31. 31.
    Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199CrossRefGoogle Scholar
  32. 32.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476CrossRefGoogle Scholar
  33. 33.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630CrossRefGoogle Scholar
  34. 34.
    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770CrossRefGoogle Scholar
  35. 35.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801CrossRefGoogle Scholar
  36. 36.
    Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674CrossRefGoogle Scholar
  37. 37.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  38. 38.
    Hallenborg P, Petersen RK, Feddersen S, Sundekilde U, Hansen JB, Blagoev B, Madsen L, Kristiansen K (2014) PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation. J Lipid Res 55:2491–2500CrossRefGoogle Scholar
  39. 39.
    Vimalraj S, Arumugam B, Miranda P, Selvamurugan N (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208CrossRefGoogle Scholar
  40. 40.
    Kupcsik L, Stoddart MJ, Li Z, Benneker LM, Alini M (2010) Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng Part A 16:1845–1855CrossRefGoogle Scholar
  41. 41.
    Boreström C, Simonsson S, Enochson L, Bigdeli N, Brantsing C, Ellerström C, Hyllner J, Lindahl A (2014) Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl Med 3:433–447CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2018

Authors and Affiliations

  • Mamoru Ueda
    • 1
  • Yoshiya Hashimoto
    • 2
    Email author
  • Yoshitomo Honda
    • 3
  • Shunsuke Baba
    • 4
  • Shosuke Morita
    • 1
  1. 1.First Department of Oral and Maxillofacial SurgeryOsaka Dental UniversityHirakataJapan
  2. 2.Department of BiomaterialsOsaka Dental UniversityHirakataJapan
  3. 3.Institute of Dental ResearchOsaka Dental UniversityHirakataJapan
  4. 4.Department of Oral ImplantologyOsaka Dental UniversityHirakataJapan

Personalised recommendations