Advertisement

Phosphorylated HER3 and FITC-labeled trastuzumab immunohistochemistry in patients with HER2-positive breast cancer treated with adjuvant trastuzumab

  • Naoki Kanomata
  • Junichi Kurebayashi
  • Takuya Moriya
Original Paper

Abstract

The development of trastuzumab has significantly improved the prognosis of HER2-positive breast cancer. However, disease recurs in some patients with HER2-positive breast cancer. A new strategy for treating HER2-positive breast cancer is necessary. Although several studies have reported that HER3 is a prognostic factor for HER2-positive breast cancers, phosphorylated HER3 (pHER3) has not been well studied. There has been no survival analysis including immunohistochemistry with trastuzumab as the primary antibody. We analyzed immunohistochemistry using anti-pHER3 antibody and FITC-labeled trastuzumab (FITC-tra). Of 78 patients enrolled in the study, we could evaluate the immunohistochemistry for pHER3 in 71 cases and that for FITC-tra in 72 cases. Sixteen cases were positive for pHER3 (16/71, 22.5%), and 19 positive for FITC-tra (19/72, 26.4%). Kaplan–Meier analysis showed a significant association of pHER3 positivity (p = 0.011) but not HER3 positivity or FITC-tra positivity with disease-free survival. Therefore, immunohistochemical evaluation of pHER3 in HER2-positive breast cancer may provide a useful biomarker. An expanded study of pHER3 involving standardization of the pHER3 test to be encouraged.

Keywords

Phosphorylated HER3 HER3 HER2 Trastuzumab Breast cancer 

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI grant (Grant no. 17K08750). The authors thank Hiroko Murakami for her excellent secretarial support and Megumi Ogo for her technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182CrossRefGoogle Scholar
  2. 2.
    Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM (2003) Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 200(3):290–297.  https://doi.org/10.1002/path.1370 CrossRefPubMedGoogle Scholar
  3. 3.
    Mendes D, Alves C, Afonso N, Cardoso F, Passos-Coelho JL, Costa L, Andrade S, Batel-Marques F (2015) The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer—a systematic review. Breast Cancer Res 17:140.  https://doi.org/10.1186/s13058-015-0648-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Paplomata E, Nahta R, O’Regan RM (2015) Systemic therapy for early-stage HER2-positive breast cancers: time for a less-is-more approach? Cancer 121(4):517–526.  https://doi.org/10.1002/cncr.29060 CrossRefPubMedGoogle Scholar
  5. 5.
    Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon y Cajal S, Arribas J, Baselga J (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 99(8):628–638.  https://doi.org/10.1093/jnci/djk134 CrossRefPubMedGoogle Scholar
  6. 6.
    Peiro G, Ortiz-Martinez F, Gallardo A, Perez-Balaguer A, Sanchez-Paya J, Ponce JJ, Tibau A, Lopez-Vilaro L, Escuin D, Adrover E, Barnadas A, Lerma E (2014) Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma. Br J Cancer 111(4):689–695.  https://doi.org/10.1038/bjc.2014.327 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127.  https://doi.org/10.1016/j.ccr.2004.06.022 CrossRefPubMedGoogle Scholar
  8. 8.
    Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402.  https://doi.org/10.1016/j.ccr.2007.08.030 CrossRefPubMedGoogle Scholar
  9. 9.
    Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, Baselga J (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68(22):9221–9230.  https://doi.org/10.1158/0008-5472.CAN-08-1740 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xu X, De Angelis C, Burke KA, Nardone A, Hu H, Qin L, Veeraraghavan J, Sethunath V, Heiser LM, Wang N, Ng CKY, Chen ES, Renwick A, Wang T, Nanda S, Shea M, Mitchell T, Rajendran M, Waters I, Zabransky DJ, Scott KL, Gutierrez C, Nagi C, Geyer FC, Chamness GC, Park BH, Shaw CA, Hilsenbeck SG, Rimawi MF, Gray JW, Weigelt B, Reis-Filho JS, Osborne CK, Schiff R (2017) HER2 reactivation through acquisition of the HER2 L755S mutation as a mechanism of acquired resistance to HER2-targeted therapy in HER2(+) breast cancer. Clin Cancer Res 23(17):5123–5134.  https://doi.org/10.1158/1078-0432.CCR-16-2191 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kurebayashi J, Kanomata N, Yamashita T, Shimo T, Mizutoh A, Moriya T, Sonoo H (2015) Prognostic value of phosphorylated HER2 in HER2-positive breast cancer patients treated with adjuvant trastuzumab. Breast Cancer 22(3):292–299.  https://doi.org/10.1007/s12282-013-0478-y CrossRefPubMedGoogle Scholar
  12. 12.
    Berghoff AS, Bartsch R, Preusser M, Ricken G, Steger GG, Bago-Horvath Z, Rudas M, Streubel B, Dubsky P, Gnant M, Fitzal F, Zielinski CC, Birner P (2014) Co-overexpression of HER2/HER3 is a predictor of impaired survival in breast cancer patients. Breast 23(5):637–643.  https://doi.org/10.1016/j.breast.2014.06.011 CrossRefPubMedGoogle Scholar
  13. 13.
    Duchnowska R, Sperinde J, Czartoryska-Arlukowicz B, Mysliwiec P, Winslow J, Radecka B, Petropoulos C, Demlova R, Orlikowska M, Kowalczyk A, Lang I, Ziolkowska B, Debska-Szmich S, Merdalska M, Grela-Wojewoda A, Zawrocki A, Biernat W, Huang W, Jassem J (2017) Predictive value of quantitative HER2, HER3 and p95HER2 levels in HER2-positive advanced breast cancer patients treated with lapatinib following progression on trastuzumab. Oncotarget 8(61):104149–104159.  https://doi.org/10.18632/oncotarget.22027 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hammoda GE, El-Hefnawy SM, Abdou AG, Abdallah RA (2017) Human epidermal growth factor receptor-3 mRNA expression as a prognostic marker for invasive duct carcinoma not otherwise specified. J Clin Diagn Res 11(2):XC01–XC05.  https://doi.org/10.7860/JCDR/2017/23812.9442 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cha Y, Han SW, Seol H, Oh DY, Im SA, Bang YJ, Park IA, Han W, Noh DY, Kim TY (2014) Immunohistochemical features associated with sensitivity to lapatinib-plus-capecitabine and resistance to trastuzumab in HER2-positive breast cancer. Anticancer Res 34(8):4275–4280PubMedGoogle Scholar
  16. 16.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF, American Society of Clinical O, College of American P (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013.  https://doi.org/10.1200/JCO.2013.50.9984 CrossRefPubMedGoogle Scholar
  17. 17.
    Carraway KL 3rd, Sliwkowski MX, Akita R, Platko JV, Guy PM, Nuijens A, Diamonti AJ, Vandlen RL, Cantley LC, Cerione RA (1994) The erbB3 gene product is a receptor for heregulin. J Biol Chem 269(19):14303–14306PubMedGoogle Scholar
  18. 18.
    Carraway KL 3rd, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, Lai C (1997) Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 387(6632):512–516.  https://doi.org/10.1038/387512a0 CrossRefPubMedGoogle Scholar
  19. 19.
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16(10):5276–5287CrossRefGoogle Scholar
  20. 20.
    Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284(1):54–65CrossRefGoogle Scholar
  21. 21.
    Alimandi M, Wang LM, Bottaro D, Lee CC, Kuo A, Frankel M, Fedi P, Tang C, Lippman M, Pierce JH (1997) Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J 16(18):5608–5617.  https://doi.org/10.1093/emboj/16.18.5608 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pinkas-Kramarski R, Lenferink AE, Bacus SS, Lyass L, van de Poll ML, Klapper LN, Tzahar E, Sela M, van Zoelen EJ, Yarden Y (1998) The oncogenic ErbB-2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin. Oncogene 16(10):1249–1258.  https://doi.org/10.1038/sj.onc.1201642 CrossRefPubMedGoogle Scholar
  23. 23.
    Prigent SA, Gullick WJ (1994) Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J 13(12):2831–2841CrossRefGoogle Scholar
  24. 24.
    Soltoff SP, Carraway KL 3rd, Prigent SA, Gullick WG, Cantley LC (1994) ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 14(6):3550–3558CrossRefGoogle Scholar
  25. 25.
    Hellyer NJ, Cheng K, Koland JG (1998) ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J 333(Pt 3):757–763CrossRefGoogle Scholar
  26. 26.
    Vijapurkar U, Cheng K, Koland JG (1998) Mutation of a Shc binding site tyrosine residue in ErbB3/HER3 blocks heregulin-dependent activation of mitogen-activated protein kinase. J Biol Chem 273(33):20996–21002CrossRefGoogle Scholar
  27. 27.
    Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, Andre F, Burris HA 3rd, Albain KS, Harbeck N, Dieras V, Crivellari D, Fang L, Guardino E, Olsen SR, Crocker LM, Sliwkowski MX (2014) Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res 20(2):456–468.  https://doi.org/10.1158/1078-0432.CCR-13-0358 CrossRefPubMedGoogle Scholar
  28. 28.
    Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im SA, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13(1):25–32.  https://doi.org/10.1016/S1470-2045(11)70336-9 CrossRefPubMedGoogle Scholar
  29. 29.
    von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, Suter T, Arahmani A, Rouchet N, Clark E, Knott A, Lang I, Levy C, Yardley DA, Bines J, Gelber RD, Piccart M, Baselga J, Committee AS, Investigators (2017) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 377(2):122–131.  https://doi.org/10.1056/NEJMoa1703643 CrossRefGoogle Scholar
  30. 30.
    Park YH, Lee KH, Sohn JH, Lee KS, Jung KH, Kim JH, Lee KH, Ahn JS, Kim TY, Kim GM, Park IH, Kim SB, Kim SH, Han HS, Im YH, Ahn JH, Kim JY, Kang J, Im SA (2018) A phase II trial of the pan-HER inhibitor poziotinib, in patients with HER2-positive metastatic breast cancer who had received at least two prior HER2-directed regimens: results of the NOV120101-203 trial. Int J Cancer.  https://doi.org/10.1002/ijc.31651 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Meneses-Lorente G, Friess T, Kolm I, Holzlwimmer G, Bader S, Meille C, Thomas M, Bossenmaier B (2015) Preclinical pharmacokinetics, pharmacodynamics, and efficacy of RG7116: a novel humanized, glycoengineered anti-HER3 antibody. Cancer Chemother Pharmacol 75(4):837–850.  https://doi.org/10.1007/s00280-015-2697-8 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Reynolds KL, Bedard PL, Lee SH, Lin CC, Tabernero J, Alsina M, Cohen E, Baselga J, Blumenschein G Jr, Graham DM, Garrido-Laguna I, Juric D, Sharma S, Salgia R, Seroutou A, Tian X, Fernandez R, Morozov A, Sheng Q, Ramkumar T, Zubel A, Bang YJ (2017) A phase I open-label dose-escalation study of the anti-HER3 monoclonal antibody LJM716 in patients with advanced squamous cell carcinoma of the esophagus or head and neck and HER2-overexpressing breast or gastric cancer. BMC Cancer 17(1):646.  https://doi.org/10.1186/s12885-017-3641-6 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Glazyrin A, Shen X, Blanc V, Eliason JF (2007) Direct detection of herceptin/trastuzumab binding on breast tissue sections. J Histochem Cytochem 55(1):25–33.  https://doi.org/10.1369/jhc.6A7017.2006 CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2018

Authors and Affiliations

  1. 1.Department of PathologyKawasaki Medical SchoolKurashikiJapan
  2. 2.Department of Breast and Thyroid SurgeryKawasaki Medical SchoolKurashikiJapan

Personalised recommendations