Advertisement

Medical Molecular Morphology

, Volume 51, Issue 3, pp 129–138 | Cite as

Novel Rest functions revealed by conditional gene ablation

  • Hitomi Aoki
Review
  • 143 Downloads

Abstract

Rest is a regulator of neuronal development and has been suggested to function in maintaining the pluripotent state of embryonic stem cells (ESCs); however, this remains controversial. Since Rest null mice show embryonic lethality, we herein generated conditional Rest knockout (CKO) models to investigate Rest functions in more detail. Our results revealed that Rest was not necessary for maintaining the pluripotency of ESCs and instead promoted primitive endoderm differentiation. In contrast to the repressive role of Rest in vitro, including ESCs, neural stem cells, and fibroblasts, on the expression of target neural genes, Rest CKO did not affect the in vivo development of brain tissue. However, the same Rest CKO mice showed an abnormal lens morphology after birth with augmented Notch signaling and down-regulated lens fiber regulator gene expression. The ablation of Rest during neural crest cell (NCC) development caused neonatal lethality due to swelling of the digestive tract with reductions in acetylcholinesterase activity in the myenteric plexus derived from NCCs. Furthermore, a reduced number of melanocyte precursors also derived from NCCs resulted in white spotted coat color phenotypes lacking mature melanocytes. Rest controls thousands of target genes and may have many unknown functions related to diseases.

Keywords

Rest/Nrsf Neural differentiation Conditional gene ablation Neural crest cell Neural stem cell Vagus nerve 

Notes

Acknowledgements

We thank Drs. Yasuhiro Yamada and Takahiro Kunisada for their thoughtful advice. This research was funded by a Grant from Gifu University Graduate School of Medicine and a Grant supported by Gifu University KASSEIKA-KEIHI (24KW). This investigation was supported in part by the Mochida Memorial Foundation for Medical and Pharmaceutical Research (H27 KEN 2-1).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957CrossRefPubMedGoogle Scholar
  2. 2.
    Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363CrossRefPubMedGoogle Scholar
  3. 3.
    Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA 93:9881–9886CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson R, Teh CH, Kunarso G, Wong KY, Srinivasan G, Cooper ML, Volta M, Chan SS, Lipovich L, Pollard SM, Karuturi RK, Wei CL, Buckley NJ, Stanton LW (2008) REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 6:e256CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sun YM, Greenway DJ, Johnson R, Street M, Belyaev ND, Deuchars J, Bee T, Wilde S, Buckley NJ (2005) Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol Biol Cell 16:5630–5638CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657CrossRefPubMedGoogle Scholar
  7. 7.
    Majumder S (2006) REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5:1929–1935CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao Y, Zhu M, Yu Y, Qiu L, Zhang Y, He L, Zhang J (2017) Brain REST/NRSF is not only a silent repressor but also an active protector. Mol Neurobiol 54:541–550CrossRefPubMedGoogle Scholar
  9. 9.
    Jorgensen HF, Chen ZF, Merkenschlager M, Fisher AG (2009) Is REST required for ESC pluripotency? Nature 457:E4–E5CrossRefPubMedGoogle Scholar
  10. 10.
    Jorgensen HF, Terry A, Beretta C, Pereira CF, Leleu M, Chen ZF, Kelly C, Merkenschlager M, Fisher AG (2009) REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136:715–721CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen ZF, Paquette AJ, Anderson DJ (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20:136–142CrossRefPubMedGoogle Scholar
  13. 13.
    Yamada Y, Aoki H, Kunisada T, Hara A (2010) Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6:10–15CrossRefPubMedGoogle Scholar
  14. 14.
    Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA 96:9873–9878CrossRefPubMedGoogle Scholar
  15. 15.
    Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T (2000) The co-repressor mSin3A is a functional component of the REST–CoREST repressor complex. J Biol Chem 275:9461–9467CrossRefPubMedGoogle Scholar
  16. 16.
    Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646CrossRefPubMedGoogle Scholar
  17. 17.
    Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, Miyazaki Ji J, Niwa H (2002) Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 16:784–789CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX (2002) Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 251:27–44CrossRefPubMedGoogle Scholar
  19. 19.
    Shimoda M, Kanai-Azuma M, Hara K, Miyazaki S, Kanai Y, Monden M, Miyazaki J (2007) Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J Cell Sci 120:3859–3869CrossRefPubMedGoogle Scholar
  20. 20.
    Aoki H, Hara A, Era T, Kunisada T, Yamada Y (2012) Genetic ablation of rest leads to in vitro-specific depression of neuronal genes during neurogenesis. Development 139:667–677CrossRefPubMedGoogle Scholar
  21. 21.
    Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978PubMedGoogle Scholar
  22. 22.
    Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388CrossRefPubMedGoogle Scholar
  23. 23.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nishiguchi S, Wood H, Kondoh H, Lovell-Badge R, Episkopou V (1998) Sox1 directly regulates the γ-crystallin genes and is essential for lens development in mice. Genes Dev 12:776–781CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ogino H, Yasuda K (2000) Sequential activation of transcription factors in lens induction. Dev Growth Differ 42:437–448CrossRefPubMedGoogle Scholar
  26. 26.
    Aoki H, Ogino H, Tomita H, Hara A, Kunisada T (2016) Disruption of Rest leads to the early onset of cataracts with the aberrant terminal differentiation of lens fiber cells. PloS One 11:e0163042CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Korsakova NV, Sergeeva VE, Petrov SB (2008) Immunohistochemical analysis of lens cells on formation of different types of age-related cataract in humans. Neurosci Behav Physiol 38:887–890CrossRefPubMedGoogle Scholar
  28. 28.
    Uusitalo M, Kivelä T (1997) Cell types of secondary cataract: an immunohistochemical analysis with antibodies to cytoskeletal elements and macrophages. Graefes Arch Clin Exp Ophthalmol 235:506–511CrossRefPubMedGoogle Scholar
  29. 29.
    Bitel CL, Perrone-Bizzozero NI, Frederikse PH (2010) HuB/C/D, nPTB, REST4, and miR-124 regulators of neuronal cell identity are also utilized in the lens. Mol Vis 16:2301–2316PubMedPubMedCentralGoogle Scholar
  30. 30.
    Frederikse PH, Kasinathan C, Kleiman NJ (2012) Parallels between neuron and lens fiber cell structure and molecular regulatory networks. Dev Biol 368:255–260CrossRefPubMedGoogle Scholar
  31. 31.
    Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316:1497–1502CrossRefPubMedGoogle Scholar
  32. 32.
    Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL (2008) Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321:111–122CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  34. 34.
    Kallunki P, Edelman GM, Jones FS (1997) Tissue-specific expression of the L1 cell adhesion molecule is modulated by the neural restrictive silencer element. J Cell Biol 138:1343–1354CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liang H, Fekete DM, Andrisani OM (2011) CtBP2 downregulation during neural cREST specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 31:955–970CrossRefPubMedGoogle Scholar
  36. 36.
    Olguın P, Oteıza P, Gamboa E, Gomez-Skarmeta JL, Kukuljan M (2006) RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. J Neurosci 26:2820–2829CrossRefPubMedGoogle Scholar
  37. 37.
    Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326CrossRefPubMedGoogle Scholar
  38. 38.
    Aoki H, Hara A, Oomori Y, Shimizu Y, Yamada Y, Kunisada T (2014) Neonatal lethality of neural crest cell-specific Rest knockout mice is associated with gastrointestinal distension caused by aberrations of myenteric plexus. Genes Cells 19:723–742CrossRefPubMedGoogle Scholar
  39. 39.
    Ito Y, Sohma S, Hirano H (1984) Light- and electron-microscopic studies on acetylcholinesterase activity in Auerbach’s plexus of the developing rat colon. Histochemistry 81:209–212CrossRefPubMedGoogle Scholar
  40. 40.
    Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, Molliver DC, Bardgett ME, Snider WD, Johnson EM Jr, Milbrandt J (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263CrossRefPubMedGoogle Scholar
  41. 41.
    Hatano Y, Yamada Y, Hata K, Phutthaphadoong S, Aoki H, Hara A (2011) Genetic ablation of a candidate tumor suppressor gene, REST, does not promote mouse colon carcinogenesis. Cancer Sci 102:1659–1664CrossRefPubMedGoogle Scholar
  42. 42.
    Aoki H, Hara A, Kunisada T (2015) White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage. Genes Cells 20:439–449CrossRefPubMedGoogle Scholar
  43. 43.
    Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez DM, Wang EP, Marshall-Walker CA, Barry BJ, Murn J, Tatarakis A, Mahajan MA, Samuels HH, Shi Y, Golden JA, Mahajnah M, Shenhav R, Walsh CA (2012) Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 151:1097–1112CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-Alegre P, Griesbach HL, Wu S, Nashelsky M, Vladar EK, Antic D, Ferguson PJ, Cirak S, Voit T, Scott MP, Axelrod JD, Gurnett C, Daoud AS, Kivity S, Neufeld MY, Mazarib A, Straussberg R, Walid S, Korczyn AD, Slusarski DC, Berkovic SF, El-Shanti HI (2008) A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet 83:572–581CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N, Cattaneo E (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 27:6972–6983CrossRefPubMedGoogle Scholar
  47. 47.
    Canzonetta C, Mulligan C, Deutsch S, Ruf S, O’Doherty A, Lyle R, Borel C, Lin-Marq N, Delom F, Groet J, Schnappauf F, De Vita S, Averill S, Priestley JV, Martin JE, Shipley J, Denyer G, Epstein CJ, Fillat C, Estivill X, Tybulewicz VL, Fisher EM, Antonarakis SE, Nizetic D (2008) DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 83:388–400CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lepagnol-Bestel AM, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, Imbeaud S, Loe-Mie Y, Benihoud K, Agier N, Salin PA, Cardona A, Khung-Savatovsky S, Kallunki P, Delabar JM, Puskas LG, Delacroix H, Aggerbeck L, Delezoide AL, Delattre O, Gorwood P, Moalic JM, Simonneau M (2009) DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 18:1405–1414CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2018

Authors and Affiliations

  1. 1.Department of Tissue and Organ Development, Regeneration, and Advanced Medical ScienceGifu University Graduate School of MedicineGifuJapan

Personalised recommendations