Development and endoscopic appearance of colorectal tumors are characterized by the expression profiles of miRNAs

  • Yoshihito Nakagawa
  • Yukihiro Akao
  • Tomomitsu Tahara
  • Hiromi Yamashita
  • Mitsuo Nagasaka
  • Tomoyuki Shibata
  • Naoki Ohmiya
Review
  • 50 Downloads

Abstract

Accumulating data indicates that certain microRNAs (miRNAs or miRs) are differently expressed in samples of tumors and paired non-tumorous samples taken from the same patients with colorectal tumors. We previously reported to clarify the relationship between the expression of the miRNAs and the endoscopic morphological appearance of the colorectal tumors. In this report, we focused on colorectal adenoma (tubular or tubulovillous adenoma), or tubular early carcinoma or type 2 adenocarcinoma, familial adenomatous polyposis (FAP), ulcerative colitis-associated tumor (UCAT), and sessile serrated adenoma/polyp (SSA/P). We tried to clarify the relationship between the expression of the miRNAs and the colorectal tumor development. The expression levels of miR-143, -145, and -34a were reduced in most of the polypoid and FAP tumors compared with those in the flat elevated, UCAT, SSA/P ones. In type 2 adenocarcinomas, the expression profile of these miRNAs was similar to those of the polypoid and FAP tumors. The expression levels of miR-7 and -21 were up-regulated in non-granular type of laterally spreading tumor, UCAT, and SSA/P compared with those in polypoid and FAP tumors. These findings indicated that the expression of onco-related miRNAs was closely associated with the development and endoscopic appearance of colorectal tumors.

Keywords

Onco-related microRNA Colorectal tumor development Adenoma–carcinoma sequence Flat elevated tumor Ulcerative colitis-associated tumor Sessile serrated adenoma/polyp 

Notes

Acknowledgements

This study was supported by grants from Fujita Health University and the staff of the Gastroenterology Department of Fujita Heath University and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Lee RC, Feinbaum RL. Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  2. 2.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355CrossRefPubMedGoogle Scholar
  3. 3.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  4. 4.
    Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7CrossRefPubMedGoogle Scholar
  5. 5.
    Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65:3509–3512CrossRefPubMedGoogle Scholar
  6. 6.
    Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, Nakashima R, Kitade Y, Naoe T (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 17:398–408CrossRefPubMedGoogle Scholar
  7. 7.
    Nakagawa Y, Akao Y, Taniguchi K, Kamatani A, Tahara T, Kamano T, Nakano N, Komura N, Ikuno H, Ohmori T, Jodai Y, Miyata M, Nagasaka M, Shibata T, Ohmiya N, Hirata I (2015) Relationship between expression of onco-related miRNAs and the endoscopic appearance of colorectal tumors. Int J Mol Sci 16:1526–1543CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T (2011) Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 300:197–204CrossRefPubMedGoogle Scholar
  9. 9.
    Tuchiya N, Nakagama H (2010) MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis. Mutat Res 693:94–100CrossRefGoogle Scholar
  10. 10.
    Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC (2008) MicroRNA expression profile associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436PubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiong B, Cheng Y, Ma L, Zhang C (2013) MiR-21 regulates biological behavior through the PTEN/PI-3K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 42:219–228CrossRefPubMedGoogle Scholar
  12. 12.
    Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins JN, Casey M, Nuovo GJ, Naziri W, Wiley JE, Mota H, Allison RR (2013) Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genom Proteom 10:93–113Google Scholar
  14. 14.
    Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J, Ng SS, Chen M, Sung JJ, Yu J (2013) MicroRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 32:5078–5088CrossRefPubMedGoogle Scholar
  15. 15.
    Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891PubMedGoogle Scholar
  16. 16.
    Minamoto T, Sawaguchi K, Mai M, Yamashita N, Sugimura T, Esumi H (1994) Infrequent K-Ras activation in superficial-type (flat) colorectal adenomas and adenocarcinomas. Cancer Res 54:2841–2844PubMedGoogle Scholar
  17. 17.
    Fujimori T, Satonaka K, Yamamura-Idei Y, Nagasako K, Maeda S (1994) Non-involvement of Ras mutations in flat colorectal adenomas and carcinomas. Int J Cancer 57:51–55CrossRefPubMedGoogle Scholar
  18. 18.
    Shirai H, Ueno E, Osaki M, Tatebe S, Ito H, Kaibara N (1995) Expression of growth factor and their receptors in human early colorectal carcinomas: immunohistochemical study. Anticancer Res 15:2889–2894PubMedGoogle Scholar
  19. 19.
    Sada M, Mitomi H, Igarashi M, Katsumata T, Saigenji K, Okayasu I (1999) Cell kinetics, p53 and Bcl-2 expression, and c-Ki-Ras mutations in flat-elevated tubulovillous adenomas and adenocarcinomas of the colorectum: comparison with polypoid lesions. Scand J Gastroenterol 34:798–807CrossRefPubMedGoogle Scholar
  20. 20.
    Kudo S, Kashida H, Nakajima T, Tamura S, Nakajo K (1997) Endoscopic diagnosis and treatment of early colorectal cancer. World J Surg 21:694–701CrossRefPubMedGoogle Scholar
  21. 21.
    Tamura S, Onishi S (2004) Laterally spreading colon cancer. N Engl J Med 351:e24CrossRefPubMedGoogle Scholar
  22. 22.
    Uraoka T, Saito Y, Matsuda T, Ikehara H, Gotoda T, Saito D, Fujii T (2006) Endoscopic indication for endoscopic mucosal resection of laterally spreading tumors in the colorectum. Gut 55:1592–1597CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Scarpa M, Castagliuolo I, Castoro C, Pozza A, Scarpa M, Kotsafti A, Angriman I (2014) Inflammatory colonic carcinogenesis: a review on pathogenesis and immunosurveillance mechanisms in ulcerative colitis. World J Gastroenterol 20:6774–6785CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Saraggi D, Fassan M, Mescoli C, Scarpa M, Valeri N, Michielan A, D’Incá R, Rugge M (2016) The molecular landscape of colitis-associated carcinogenesis. Dig Liver Dis 49:326–330CrossRefPubMedGoogle Scholar
  25. 25.
    Kobayashi K, Tomita H, Shimizu M, Tanaka T, Suzui N, Miyazaki T, Hara A (2017) p53 expression as a diagnostic biomarker in ulcerative colitis-associated cancer. Int J Mol Sci 18:E1284CrossRefPubMedGoogle Scholar
  26. 26.
    Fujita K, Yamamoto H, Matsumoto T, Hirahashi M, Gushima M, Kishimoto J, Nishiyama K, Taguchi T, Yao T, Oda Y (2011) Sessile serrated adenoma with early neoplastic progression: a clinicopathologic and molecular study. Am J Surg Pathol 35:295–304CrossRefPubMedGoogle Scholar
  27. 27.
    Bettington M, Walker N, Rosty C, Brown I, Clouston A, McKeone D, Pearson SA, Leggett B, Whitehall V (2017) Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma. Gut 66:97–106CrossRefPubMedGoogle Scholar
  28. 28.
    Japanese Society for Cancer of the Colon and Rectum (2013) In Japanese Classification of Colorectal Carcinoma, 8th edn. Kanehara Shuppan, TokyoGoogle Scholar
  29. 29.
    Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Down-regulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98:1914–1920CrossRefPubMedGoogle Scholar
  30. 30.
    Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y (2007) Characterized mechanism of α-mangostin-induced cell death: Caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem 15:5620–5628CrossRefPubMedGoogle Scholar
  31. 31.
    Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y (2009) Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 77:12–21CrossRefPubMedGoogle Scholar
  32. 32.
    Iio A, Nakagawa Y, Hirata I, Naoe T, Akao Y (2010) Identification of non-coding RNAs embracing microRNA-143/145 cluster. Mol Cancer 9:136–142CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, Hu J (2010) miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-myc. J Exp Clin Cancer Res 29:151CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    English JM, Pearson G, Baer R, Cobb MH (1998) Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem 73:3854–3860CrossRefGoogle Scholar
  35. 35.
    Rothberg PG (1987) The role of the oncogene c-myc in sporadic large bowel cancer and familial polyposis coli. Semin Surg Oncol 3:152–158CrossRefPubMedGoogle Scholar
  36. 36.
    Hashimoto K, Nakagawa Y, Morikawa H, Niki M, Egashira Y, Hirata I, Katsu K, Akao Y (2001) Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. Carcinogenesis 22:1965–1970CrossRefPubMedGoogle Scholar
  37. 37.
    Akao Y, Kumasaki M, Shinohara H, Sugito N, Kuranaga Y, Tsujino T, Yoshikawa Y, Kitade Y (2018) Impairment of K-Ras signaling networks and increased efficacy of EGFR inhibitors by a novel synthetic miR-143. Cancer Sci (in press) Google Scholar
  38. 38.
    Su J, Liang H, Yao W, Wang N, Zhang S, Yan X, Feng H, Pang W, Wang Y, Wang X, Fu Z, Liu Y, Zhao C, Zhang J, Zhang CY, Zen K, Chen X, Wang Y (2014) MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9:e114420CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Siemens H, Jackstadt R, Kaller M, Hermeking H (2013) Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget 4:1399–1415CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nagano Y, Toiyama Y, Okugawa Y, Imaoka H, Fujikawa H, Yasuda H, Yoshiyama S, Hiro J, Kobayashi M, Ohi M, Araki T, Inoue Y, Mohri Y, Kusunoki M (2016) MicroRNA-7 Is associated with malignant potential and poor prognosis in human colorectal cancer. Anticancer Res 36:6521–6526CrossRefPubMedGoogle Scholar
  41. 41.
    Vicinus B, Rubie C, Stegmaier N, Frick VO, Kölsch K, Kauffels A, Ghadjar P, Wagner M, Glanemann M (2013) miR-21 and its target gene CCL20 are both highly overexpressed in the microenvironment of colorectal tumors: significance of their regulation. Oncol Rep 30:1285–1292CrossRefPubMedGoogle Scholar
  42. 42.
    Kinzier KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170CrossRefGoogle Scholar
  43. 43.
    Senda T, Shimomura A, Iizuka-Koga A (2005) Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 80:121–131CrossRefPubMedGoogle Scholar
  44. 44.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767CrossRefPubMedGoogle Scholar
  45. 45.
    Muto T, Nagawa H, Watanabe T, Masaki T, Sawada T (1997) Colorectal carcinogenesis: Historical review. Dis Colon Rectum 40:S80–S85CrossRefPubMedGoogle Scholar
  46. 46.
    Mukawa K, Fujii S, Takeda J, Kitajima K, Tominaga K, Chibana Y, Fujita M, Ichikawa K, Tomita S, Ono Y, Imura J, Kawamata H, Chiba T, Hiraishi H, Terano A, Fujimori T (2005) Analysis of K-Ras mutations and expression of cyclooxygenase-2 and gastrin protein in laterally spreading tumors. J Gastroenterol Hepatol 20:1584–1590CrossRefPubMedGoogle Scholar
  47. 47.
    Hiraoka S, Kato J, Tatsukawa M, Harada K, Fujita H, Morikawa T, Shiraha H, Shiratori Y (2006) Laterally spreading type of colorectal adenoma exhibits a unique methylation phenotype and K-Ras mutations. Gastroenterology 131:379–389CrossRefPubMedGoogle Scholar
  48. 48.
    Teixeira CR, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F (1996) Flat-elevated colorectal neoplasms exhibit a high malignant potential. Oncology 53:89–93CrossRefPubMedGoogle Scholar
  49. 49.
    Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp VI, Ballegooijen MV, Hankey BF, Shi W, Bond JH, Schapiro M, Joel F, Panish JF, Stewart ET, Waye JD (2012) Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 366:687–696CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802CrossRefPubMedGoogle Scholar
  51. 51.
    Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, Qi L, Wu P, Jiao HL, Xie YJ, Zhang C, Wang JX, Ding YQ (2014) MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. J Pathol 232:415–427CrossRefPubMedGoogle Scholar
  52. 52.
    Chai J, Wang S, Han D, Dong W, Xie C, Guo H (2015) MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol 36:1313–1321CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2018

Authors and Affiliations

  1. 1.Department of Gastroenterology, School of MedicineFujita Health UniversityToyoakeJapan
  2. 2.The United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan

Personalised recommendations