Advertisement

Medical Molecular Morphology

, Volume 51, Issue 3, pp 156–165 | Cite as

Effect of systemic administration of lipopolysaccharides derived from Porphyromonas gingivalis on gene expression in mice kidney

  • Fumiya Harada
  • Osamu Uehara
  • Tetsuro Morikawa
  • Daichi Hiraki
  • Aya Onishi
  • Seiko Toraya
  • Bhoj Raj Adhikari
  • Rie Takai
  • Koki Yoshida
  • Jun Sato
  • Michiko Nishimura
  • Itsuo Chiba
  • Ching Zong Wu
  • Yoshihiro Abiko
Original Paper

Abstract

Although an association between periodontitis and chronic kidney disease (CKD) has been suggested, the mechanism involved remains unclear. Herein, we examined the global gene expression profile in a mouse model that showed no acute inflammation in the kidney following stimulation with lipopolysaccharides (LPS) derived from Porphyromonas gingivalis (PG-LPS). The mice were injected with PG-LPS at a concentration of 5 mg/kg intraperitoneally, every 3 days, for 1 month. Microarray analysis was used to identify 10 genes with the highest expression levels in the kidney stimulated with PG-LPS. Among them, the functions of five genes (Saa3, Ticam2, Reg3b, Ocxt2a, and Xcr1) were known. The upregulation of these genes was confirmed by quantitative polymerase chain reaction assay. Furthermore, we examined whether the expression of these upregulated genes were altered in endothelial cells derived from the kidney, in vitro. The mRNA expression levels of all five genes were significantly higher in the experimental group than in the controls (no LPS stimulation; *p < 0.05). In conclusion, the responses noted in the kidney may have arisen mainly from the endothelial cells. Moreover, upregulation of the expression levels of Saa3, Ticam2, Reg3b, Ocxt2a, and Xcr1 may be associated with the pathogenesis of CKD.

Keywords

Periodontitis Kidney LPS Porphyromonas gingivalis Microarray 

References

  1. 1.
    Llambés F, Arias-Herrera S, Caffesse R (2015) Relationship between diabetes and periodontal infection. World JDiabetes; 6:927–935CrossRefGoogle Scholar
  2. 2.
    Linden GJ, Lyons A, Scannapieco FA (2013) Periodontal systemic associations: review of the evidence. J Clin Periodontol 40(Suppl 14):S8–S19PubMedGoogle Scholar
  3. 3.
    Chambrone L, Foz AM, Guglielmetti MR, Pannuti CM, Artese HP, Feres M, Romito GA (2013) Periodontitis and chronic kidney disease: a systematic review of the association of diseases and the effect of periodontal treatment on estimated glomerular filtration rate. J Clin Periodontol 40:443–456CrossRefPubMedGoogle Scholar
  4. 4.
    Ogrendik M (2013) Rheumatoid arthritis is an autoimmune disease caused by periodontal pathogens. Int J Gen Med 6:383–386CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Levey AS, Coresh J (2012) Chronic kidney disease. Lancet 379:165–180CrossRefPubMedGoogle Scholar
  6. 6.
    Knotek M, Rogachev B, Wang W, Ecder T, Melnikov V, Gengaro PE, Esson M, Edelstein CL, Dinarello CA, Schrier RW (2001) Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59:2243–2249CrossRefPubMedGoogle Scholar
  7. 7.
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752PubMedGoogle Scholar
  8. 8.
    Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR, Howald WN, Way SS, Hajjar AM (2004) Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun 72:5041–5051CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sawa Y, Takata S, Hatakeyama Y, Ishikawa H, Tsuruga E (2014) Expression of toll-like receptor 2 in glomerular endothelial cells and promotion of diabetic nephropathy by Porphyromonas gingivalis lipopolysaccharide. PLoS One 9:e97165CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Takahashi K, Mizukami H, Kamata K, Inaba W, Kato N, Hibi C, Yagihashi S (2012) Amelioration of acute kidney injury in lipopolysaccharide-induced systemic inflammatory response syndrome by an aldose reductase inhibitor, fidarestat. PLoS One 7:e30134CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mcmanus JFA, Cason EJ (1950) Carbohydrate histochemistry studied by acetylation techniques; i. periodicacidmethods. J Exp Med 91(6):651–654CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gomori G (1937) Silver impregnation of reticulum in paraffin sections. Am J Pathol 13(6):993–1002.5PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Franco F, Agnes BF, Mark H, Emile de H, Kensuke J, Laure HN, Jai R, Surya VS, Ingeborg MB, Bruijn Jan A (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556‒563CrossRefGoogle Scholar
  14. 14.
    Manno C, Strippoli GF, D’Altri C, Torres D, Rossini M, Schena PF (2007) A novel simpler histological classification for renal survival in IgA nephropathy:a retrospective study. Am J Kidney Dis 49:763–775CrossRefPubMedGoogle Scholar
  15. 15.
    Ruokonen H, Nylund K, Furuholm J, Meurman JH, Sorsa T, Kotaniemi K, Ortiz F, Heikkinen AM (2017) Oral health and mortality in patients with chronic kidney disease. J Periodontol 88(1):26–33CrossRefPubMedGoogle Scholar
  16. 16.
    Larson MA, Wei SH, Weber A, Weber AT, McDonald TL (2003) Induction of human mammary-associated serum amyloid A3 expression by prolactin or lipopolysaccharide. Biochem Biophys Res Commun 301:1030–1037CrossRefPubMedGoogle Scholar
  17. 17.
    Seidl SE, Pessolano LG Jr, Bishop CA, Best M, Rich CB, Stone PJ, Schreiber BM (2017) Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix. PLoS One 12(3):e0171711CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sanada Y, Yamamoto T, Satake R, Yamashita A, Kanai S, Kato N, van de Loo FA, Nishimura F, Scherer PE, Yanaka N (2016) Serum amyloid A3 gene expression in adipocytes is an indicator of the interaction with macrophages. Sci Rep 6: 38697CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klein DC, Skjesol A, Kers-Rebel ED, Sherstova T, Sporsheim B, Egeberg KW, Stokke BT, Espevik T, Husebye H (2015) CD14, TLR4 and TRAM show different trafficking dynamics during LPS stimulation. Traffic 16(7):677–690CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, Jacovetti C, Li B, Siddique T, Xiong X, Yin H, Wang M, Zhao H, Liu JL (2011) Coordinated age-dependent and pancreatic-specific expression of mouse Reg2Reg3α, and Reg3β genes. Growth Factors 29(2–3):72–81CrossRefPubMedGoogle Scholar
  21. 21.
    Wang L, Fouts DE, Stärkel P, Hartmann P, Chen P, Llorente C, DePew J, Moncera K, Ho SB, Brenner DA, Hooper LV, Schnabl B (2016) Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19(2):227–239CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ferreira L, Quiros Y, Sancho-Martínez SM, García-Sánchez O, Raposo C, López-Novoa JM, González-Buitrago JM, López-Hernández FJ (2011) Urinary levels of regenerating islet-derived protein III beta and gelsolin differentiate gentamicin from cisplatin-induced acute kidney injury in rats. Kidney Int 79:518–528CrossRefPubMedGoogle Scholar
  23. 23.
    Onishi M, Yasunaga T, Tanaka H, Nishimune Y, Nozaki M (2004) Gene structure and evolution of testicular haploid germ cell-specific genes, Oxct2a and Oxct2b. Genomics 83:647–657CrossRefPubMedGoogle Scholar
  24. 24.
    Marcondes S, Turko IV, Murad F (2001) Nitration of succinyl-CoA:3-oxoacid CoA-transferase in rats after endotoxin administration. Proc Natl Acad Sci USA 98(13):7146–7151CrossRefPubMedGoogle Scholar
  25. 25.
    Li K, Wei G, Cao Y, Li D, Li P, Zhang J, Bao H, Chen Y, Fu Y, Sun P, Bai X, Ma X, Lu Z, Liu Z (2017) The identification and distribution of cattle XCR1 and XCL1 among peripheral blood cells: new insights into the design of dendritic cells targeted veterinary vaccine. PLoS One 12:e0170575CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang CR, Liu MF, Huang YH, Chen HC (2004) Up-regulation of XCR1 expression in rheumatoid joints. Rheumatology 43(5):569–573CrossRefPubMedGoogle Scholar
  27. 27.
    Lei Y, Takahama Y (2012) XCL1 and XCR1 in the immune system. Microbes Infect 14(3):262–267CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2018

Authors and Affiliations

  • Fumiya Harada
    • 1
    • 2
  • Osamu Uehara
    • 3
  • Tetsuro Morikawa
    • 1
  • Daichi Hiraki
    • 1
  • Aya Onishi
    • 1
  • Seiko Toraya
    • 3
  • Bhoj Raj Adhikari
    • 1
  • Rie Takai
    • 4
  • Koki Yoshida
    • 1
  • Jun Sato
    • 1
  • Michiko Nishimura
    • 1
  • Itsuo Chiba
    • 3
  • Ching Zong Wu
    • 2
    • 5
    • 6
  • Yoshihiro Abiko
    • 1
  1. 1.Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of DentistryHealth Sciences University of HokkaidoIshikari-TobetsuJapan
  2. 2.School of Dentistry, College of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
  3. 3.Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of DentistryHealth Sciences University of HokkaidoIshikari-TobetsuJapan
  4. 4.The Research Institute of Health SciencesHealth Sciences University of HokkaidoHokkaidoJapan
  5. 5.Department of DentistryTaipei Medical University HospitalTaipeiTaiwan
  6. 6.Department of DentistryLotung PohAi HospitalYilanTaiwan

Personalised recommendations