Medical Molecular Morphology

, Volume 46, Issue 4, pp 185–192

Clinical significance of cell cycle inhibitors in hepatocellular carcinoma

  • Yasunobu Matsuda
  • Toshifumi Wakai
  • Masayuki Kubota
  • Masaaki Takamura
  • Satoshi Yamagiwa
  • Yutaka Aoyagi
  • Mami Osawa
  • Shun Fujimaki
  • Ayumi Sanpei
  • Takuya Genda
  • Takafumi Ichida
Award Review

Abstract

It is well accepted that cell cycle regulators are strongly implicated in the progression of cancer development. p16 and p27 are potent cyclin-dependent kinase (CDK) inhibitors involved in G1 phase progression, and are regarded as adverse prognostic biomarkers for various types of cancers. It has been reported that the main mechanism for p16 inactivation is aberrant DNA methylation, while p27 is exclusively inactivated by proteasome-mediated protein degradation. We have found that p27 is decreased in around half of hepatocellular carcinomas (HCCs), and in some cases p27 is inactivated by inappropriate interaction with cyclin D1/CDK4 complexes. In such cases, p16 is concomitantly inactivated through DNA methylation. Taking into consideration the complex interaction between p16 and p27, a comprehensive analysis including p16 and p27 would be useful for predicting the prognosis of HCC patients.

Keywords

Cell cycle p16 Id-1 p27 Liver cirrhosis Hepatocellular carcinoma 

References

  1. 1.
    Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917PubMedCrossRefGoogle Scholar
  2. 2.
    El-Serag HB (2011) Hepatocellular carcinoma. New Engl J Med 365:1118–1127PubMedCrossRefGoogle Scholar
  3. 3.
    Matsuda Y, Ichida T, Fukumoto M (2011) Hepatocellular carcinoma and liver transplantation: clinical perspective on molecular targeted strategies. Med Mol Morphol 44:117–124PubMedCrossRefGoogle Scholar
  4. 4.
    Shariff MIF, Cox IJ, Gomaa AI, Khan S, Gedroyc W, Taylor-Robinson SD (2009) Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol 3:353–367PubMedCrossRefGoogle Scholar
  5. 5.
    Gao J, Xie L, Yang W-S, Zhang W, Gao S, Wang J, Xiang Y-B (2012) Risk factors of hepatocellular carcinoma—current status and perspectives. Asian Pac J Cancer Prev 13:743–752PubMedCrossRefGoogle Scholar
  6. 6.
    Feitelson M, Sun B, Satiroglu T, Liu J, Pan J, Lian Z (2002) Genetic mechanisms of hepatocarcinogenesis. Oncogene 21:2593–2604PubMedCrossRefGoogle Scholar
  7. 7.
    Effendi K, Sakamoto M (2010) Molecular pathology in early hepatocarcinogenesis. Oncology 78:157–160PubMedCrossRefGoogle Scholar
  8. 8.
    Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204PubMedCrossRefGoogle Scholar
  9. 9.
    Greenbaum LE (2004) Cell cycle regulation and hepatocarcinogenesis. Cancer Biol Ther 3:1200–1207PubMedCrossRefGoogle Scholar
  10. 10.
    Matsuda Y, Ichida T (2006) P16 and P27 are functionally correlated during the progress of hepatocarcinogenesis. Med Mol Morphol 39:169–175PubMedCrossRefGoogle Scholar
  11. 11.
    Matsuda Y (2008) Molecular mechanism underlying the functional loss of cyclin-dependent kinase inhibitors p16 and p27 in hepatocellular carcinoma. World J Gastroenterol 14:1734–1740PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Borzio M, Trerè D, Borzio F, Ferraria R, Bruno S, Roncalli M, Colloredo G, Leandro G, Oliveri F, Derenzini M (1998) Hepatocyte proliferation rate is a powerful parameter for predicting hepatocellular carcinoma development in liver cirrhosis. Mol Pathol 51:96–101PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shibata M, Morizane T, Uchida T, Yamagami T, Onozuka Y, Nakano M (1998) Early reports irregular regeneration of hepatocytes and risk of hepatocellular carcinoma in chronic hepatitis and cirrhosis with hepatitis-C-virus infection. Lancet 351:1773–1777PubMedCrossRefGoogle Scholar
  14. 14.
    Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou Q, Hopp T, Fuqua SA, Steeg PS (2001) Cyclin D1 in breast premalignancy and early breast cancer: implications for prevention and treatment. Cancer Lett 162:3–17PubMedCrossRefGoogle Scholar
  16. 16.
    Poomsawat S, Buajeeb W, Khovidhunkit S, Punyasingh J (2010) Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med 39:793–799PubMedCrossRefGoogle Scholar
  17. 17.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512PubMedCrossRefGoogle Scholar
  18. 18.
    Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275PubMedCrossRefGoogle Scholar
  19. 19.
    Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685PubMedCrossRefGoogle Scholar
  20. 20.
    Matsuda Y, Ichida T, Matsuzawa J, Sugimura KAH (1999) p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma. Gastroenterology 116:394–400PubMedCrossRefGoogle Scholar
  21. 21.
    Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211PubMedCrossRefGoogle Scholar
  23. 23.
    Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307PubMedPubMedCentralGoogle Scholar
  24. 24.
    Signer RAJ, Montecino-Rodriguez E, Witte ON, Dorshkind K (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 22:3115–3120PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, Van de Sluis B, Kirkland JL, Van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Coppé J-P, Rodier F, Patil CK, Freund A, Desprez P-Y, Campisi J (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286:36396–36403PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ohtani N, Zebedee Z, Huot T, Stinson J, Sugimoto M, Ohashi Y, Sharrocks A, Peters G, Hara E (2001) Opposing effects of Ets and Id proteins on p16 INK4a expression during cellular senescence. Nature 409:1067–1070PubMedCrossRefGoogle Scholar
  28. 28.
    Alani RM, Young AZ, Shifflett CB (2001) Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci USA 98:7812–7816PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Matsuda Y, Yamagiwa S, Takamura M, Honda Y, Ishimoto Y, Ichida T, Aoyagi Y (2005) Overexpressed Id-1 is associated with a high risk of hepatocellular carcinoma development in patients with cirrhosis without transcriptional repression of p16. Cancer 104:1037–1044PubMedCrossRefGoogle Scholar
  30. 30.
    Swarbrick A, Roy E, Allen T, Bishop JM (2008) Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA 105:5402–5407PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jacobs JJ, Kieboom K, Marino S, DePinho RA, Van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168PubMedCrossRefGoogle Scholar
  32. 32.
    Park I, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305PubMedCrossRefGoogle Scholar
  33. 33.
    Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW (2011) BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 112:2729–2741PubMedCrossRefGoogle Scholar
  34. 34.
    Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez-Cespedes M, Mendez J, Antequera F, Serrano M (2006) Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440:702–706PubMedCrossRefGoogle Scholar
  35. 35.
    Kotake Y, Zeng Y, Xiong Y (2009) DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res 69:1809–1814PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Dhawan S, Tschen S-I, Bhushan A (2009) Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev 23:906–911PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Agger K, Cloos PAC, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23:1171–1176PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yao J-Y, Zhang L, Zhang X, He Z-Y, Ma Y, Hui L-J, Wang X, Hu Y-P (2010) H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. J Biol Chem 285:18828–18837PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zang J-J, Xie F, Xu J-F, Qin Y-Y, Shen R-X, Yang J-M, He J (2011) P16 gene hypermethylation and hepatocellular carcinoma: a systematic review and meta-analysis. World J Gastroenterol 17:3043–3048PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Piao Z, Park C, Lee JS, Yang CH, Choi KY, Kim H (1998) Homozygous deletions of the CDKN2 gene and loss of heterozygosity of 9p in primary hepatocellular carcinoma. Cancer Lett 122:201–207PubMedCrossRefGoogle Scholar
  41. 41.
    Chaubert P, Gayer R, Zimmermann A, Fontolliet C, Stamm B, Bosman F, Shaw P (1997) Germ-line mutations of the p16INK4(MTS1) gene occur in a subset of patients with hepatocellular carcinoma. Hepatology 25:1376–1381PubMedCrossRefGoogle Scholar
  42. 42.
    Lin Y, Chen C, Huang G, Lee P, Wang J, Chen D, Lu F, Sheu J (1998) Infrequent mutations and no methylation of CDKN2A (P16/MTS1) and CDKN2B (p15/MTS2) in hepatocellular carcinoma in Taiwan. Eur J Cancer 34:1789–1795PubMedCrossRefGoogle Scholar
  43. 43.
    Gonzalgo ML, Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucl Acids Res 25:2529–2531PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kaneto H, Sasaki S, Yamamoto H et al (2001) Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 48:372–377PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Li X, Hui A-M, Sun L, Hasegawa K, Torzilli G, Minagawa M, Takayama T, Makuuchi M (2004) p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clin Cancer Res 10:7484–7489PubMedCrossRefGoogle Scholar
  46. 46.
    Csepregi A, Ebert MP, Röcken C, Schneider-Stock R, Hoffmann J, Schulz H-U, Roessner A, Malfertheiner P (2010) Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma. BMC cancer 10:317PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183:10–17PubMedCrossRefGoogle Scholar
  48. 48.
    Sgambato A, Cittadini A, Faraglia B, Weinstein B (2000) Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 183:18–27PubMedCrossRefGoogle Scholar
  49. 49.
    Nakayama KI, Hatakeyama S, Nakayama K (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282:853–860PubMedCrossRefGoogle Scholar
  50. 50.
    Pagano M (2004) Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis. Mol Cell 14:414–416PubMedCrossRefGoogle Scholar
  51. 51.
    Carrano A, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199PubMedCrossRefGoogle Scholar
  52. 52.
    Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW (1999) p27Kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313–323PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Fiorentino M, Altimari A, Errico AD (2000) Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin Cancer Res 6:3966–3972PubMedGoogle Scholar
  54. 54.
    Tannapfel A, Grund D, Katalinic A, Uhlmann D, Köckerling F, Haugwitz U, Wasner M, Hauss J, Engeland K, Wittekind C (2000) Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer 355:350–355CrossRefGoogle Scholar
  55. 55.
    Qin L, Ng I (2001) Expression of p27(KIP1) and p21(WAF1/CIP1) in primary hepatocellular carcinoma: clinicopathologic correlation and survival analysis. Hum Pathol 32:778–784PubMedCrossRefGoogle Scholar
  56. 56.
    Armengol C, Boix L, Bachs O, Sole M, Fuster J, Sala M, Llovet JM, Rodes J, Bruix J (2003) p27 Kip1 is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma. J Hepatol 38:591–597PubMedCrossRefGoogle Scholar
  57. 57.
    Zhou Q, Wang G, Liang L, Zheng W, Pang Z (2003) Expression of p27, cyclin A in hepatocellular carcinoma and its clinical significance. World J Gastroenterol 9:2450–2454PubMedGoogle Scholar
  58. 58.
    Sgambato A, Zhang YJ, Arber N, Hibshoosh H, Doki Y, Ciaparrone M, Santella RM, Cittadini A, Weinstein IB (1997) Deregulated expression of p27Kip1 in human breast cancers. Clin Cancer Res 3:1879–1887PubMedGoogle Scholar
  59. 59.
    Fredersdorf S, Burns J, Milne AM, Packham G, Fallis L, Gillett CE, Royds JA, Peston D, Hall PA, Hanby AM, Barnes DM, Shousha S, O′Hare MJ, Lu X (1997) High level expression of p27Kip1 and cyclin D1 in some human breast cancer cells: inverse correlation between the expression of p27Kip1 and degree of malignancy in human breast and colorectal cancers. Proc Natl Acad Sci USA 94:6380–6385PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Liu X, Sun Y, Ehrlich M, Lu T, Kloog Y, Weinberg RA, Lodish HF, Henis YI (2000) Disruption of TGF-beta growth inhibition by oncogenic ras is linked to p27Kip1 mislocalization. Oncogene 19:5926–5935PubMedCrossRefGoogle Scholar
  61. 61.
    Donovan JC, Milic A, Slingerland JM (2001) Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 276:40888–40895PubMedCrossRefGoogle Scholar
  62. 62.
    Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153–1160PubMedCrossRefGoogle Scholar
  63. 63.
    Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8:1136–1144PubMedCrossRefGoogle Scholar
  64. 64.
    Liang J, Slingerland JM (2003) Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2:339–345PubMedCrossRefGoogle Scholar
  65. 65.
    Kim J, Jonasch E, Alexander A, Short JD, Cai S, Wen S, Tsavachidou D, Tamboli P, Czerniak BA, Do KA, Wu KJ, Marlow LA, Wood CG, Copland JA, Walker CL (2009) Cytoplasmic sequestration of p27 via AKT phosphorylation in renal cell carcinoma. Clin Cancer Res 15:81–90PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nan KJ, Jing Z, Gong L (2004) Expression and altered subcellular localization of the cyclin-dependent kinase inhibitor p27Kip1 in hepatocellular carcinoma. World J Gastroenterol 10:1425–1430PubMedGoogle Scholar
  67. 67.
    Zhou L, Huang Y, Li J, Wang Z (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 27:255–261PubMedCrossRefGoogle Scholar
  68. 68.
    Matsuda Y, Ichida T, Genda T, Yamagiwa S, Aoyagi Y, Asakura H (2003) Loss of p16 contributes to p27 sequestration by cyclin D(1)-cyclin-dependent kinase 4 complexes and poor prognosis in hepatocellular carcinoma. Clin Cancer Res 9:3389–3396PubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2013

Authors and Affiliations

  • Yasunobu Matsuda
    • 1
  • Toshifumi Wakai
    • 2
  • Masayuki Kubota
    • 3
  • Masaaki Takamura
    • 4
  • Satoshi Yamagiwa
    • 4
  • Yutaka Aoyagi
    • 4
  • Mami Osawa
    • 3
  • Shun Fujimaki
    • 1
  • Ayumi Sanpei
    • 1
  • Takuya Genda
    • 5
  • Takafumi Ichida
    • 5
  1. 1.Department of Medical TechnologyNiigata University Graduate School of Health SciencesNiigataJapan
  2. 2.Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  3. 3.Division of Pediatric SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  4. 4.Division of Gastroenterology and HepatologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  5. 5.Department of Gastroenterology and HepatologyJuntendo University Shizuoka HospitalIzunokuniJapan

Personalised recommendations