Medical Molecular Morphology

, Volume 46, Issue 4, pp 225–232 | Cite as

Acquired cystic disease-associated renal cell carcinoma: further characterization of the morphologic and immunopathologic features

  • Soomin Ahn
  • Ghee Young Kwon
  • Yong Mee Cho
  • Sun-Young Jun
  • Chan Choi
  • Hyun-Jung Kim
  • Yong Wook Park
  • Weon Seo Park
  • Jung Won Shim
Original Paper


Acquired cystic disease-associated renal cell carcinoma (ACD-RCC) is a subtype of renal cell carcinoma (RCC) with unique morphologic features found exclusively in the background of end-stage renal disease. We analyzed the clinicopathologic features and immumoreactive profiles of 12 cases of ACD-RCC to further characterize this recently recognized entity. Review of histologic slides was performed in conjunction with immunohistochemical staining directed to the contemporary diagnostic antibodies and the putative target therapy-related markers. Histologically, the tumors showed characteristic inter-or intracellular microlumens and eosinophilic tumor cells. Intratumoral hemosiderin deposition and degenerating foamy tumor cells were consistent findings which were not previously described. Immunohistochemically, all the tumors were positive for alpha-methylacyl-CoA-racemase, CD10, pan-cytokeratin, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and c-met, while negative for carbonic anhydrase-9, CD57, CD68, c-kit, pax-2, platelet-derived growth factor receptor (PDGFR)-α or vascular endothelial growth factor receptor (VEGFR)-2. Heterogenous staining was found for CK7 and kidney-specific cadherin. Positive reaction to c-met suggests its utility as a plausible therapeutic target in ACD-RCC. Thus, we present the unique morphologic and immunopathologic features of ACD-RCC, which may be helpful in both diagnostic and therapeutic aspects.


Acquired cystic disease Renal cell carcinoma c-met Target therapy 


  1. 1.
    Hughson MD, Schmidt L, Zbar B, Daugherty S, Meloni AM, Silva FG, Sandberg AA (1996) Renal cell carcinoma of end-stage renal disease: a histopathologic and molecular genetic study. J Am Soc Nephrol 7:2461–2468PubMedGoogle Scholar
  2. 2.
    Tickoo SK, dePeralta-Venturina MN, Harik LR, Worcester HD, Salama ME, Young AN, Moch H, Amin MB (2006) Spectrum of epithelial neoplasms in end-stage renal disease: an experience from 66 tumor-bearing kidneys with emphasis on histologic patterns distinct from those in sporadic adult renal neoplasia. Am J Surg Pathol 30:141–153PubMedCrossRefGoogle Scholar
  3. 3.
    Nouh MA, Kuroda N, Yamashita M, Hayashida Y, Yano T, Minakuchi J, Taniguchi S, Nomura I, Inui M, Sugimoto M, Kakehi Y (2009) Renal cell carcinoma in patients with end-stage renal disease: relationship between histological type and duration of dialysis. BJU Int 105:620–627PubMedCrossRefGoogle Scholar
  4. 4.
    Bhatnagar R, Alexiev BA (2012) Renal-cell carcinomas in end-stage kidneys: a clinicopathological study with emphasis on clear-cell papillary renal-cell carcinoma and acquired cystic kidney disease-associated carcinoma. Int J Surg Pathol 20:19–28PubMedCrossRefGoogle Scholar
  5. 5.
    Sule N, Yakupoglu U, Shen SS, Krishnan B, Yang G, Lerner S, Sheikh-Hamad D, Truong LD (2005) Calcium oxalate deposition in renal cell carcinoma associated with acquired cystic kidney disease: a comprehensive study. Am J Surg Pathol 29:443–451PubMedCrossRefGoogle Scholar
  6. 6.
    Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, Redman BG, Margolin KA, Merchan JR, Wilding G, Ginsberg MS, Bacik J, Kim ST, Baum CM, Michaelson MD (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295:2516–2524PubMedCrossRefGoogle Scholar
  7. 7.
    Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro DP, Srinivasan R (2010) Molecular diagnosis and therapy of kidney cancer. Annu Rev Med 61:329–343PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Stewart GD, O’Mahony FC, Powles T, Riddick AC, Harrison DJ, Faratian D (2011) What can molecular pathology contribute to the management of renal cell carcinoma? Nat Rev Urol 8:255–265PubMedCrossRefGoogle Scholar
  9. 9.
    Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12:89–103PubMedCrossRefGoogle Scholar
  10. 10.
    Giubellino A, Linehan WM, Bottaro DP (2009) Targeting the Met signaling pathway in renal cancer. Expert Rev Anticancer Ther 9:785–793PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Konda R, Sato H, Hatafuku F, Nozawa T, Ioritani N, Fujioka T (2004) Expression of hepatocyte growth factor and its receptor C-met in acquired renal cystic disease associated with renal cell carcinoma. J Urol 171:2166–2170PubMedCrossRefGoogle Scholar
  12. 12.
    Rioux-Leclercq NC, Epstein JI (2003) Renal cell carcinoma with intratumoral calcium oxalate crystal deposition in patients with acquired cystic disease of the kidney. Arch Pathol Lab Med 127:E89–E92PubMedGoogle Scholar
  13. 13.
    Wang S, Filipowicz EA, Schnadig VJ (2001) Abundant intracytoplasmic hemosiderin in both histiocytes and neoplastic cells: a diagnostic pitfall in fine-needle aspiration of cystic papillary renal-cell carcinoma. Diagn Cytopathol 24:82–85PubMedCrossRefGoogle Scholar
  14. 14.
    Pardo-Mindan FJ, Diez J, Esparza N, Robledo C (1990) Renal siderosis in patients with heart-valve prostheses: clinical implications. Nephrol Dial Transplant 5:847–850PubMedCrossRefGoogle Scholar
  15. 15.
    Jaffar R, Mohanty SK, Khan A, Fischer AH (2009) Hemosiderin laden macrophages and hemosiderin within follicular cells distinguish benign follicular lesions from follicular neoplasms. Cytojournal 6:3PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Choi JS, Kim MK, Seo JW, Choi YL, Kim DH, Chun YK, Ko YH (2006) MET expression in sporadic renal cell carcinomas. J Korean Med Sci 21:672–677PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Enoki Y, Katoh G, Okabe H, Yanagisawa A (2010) Clinicopathological features and CD57 expression in renal cell carcinoma in acquired cystic disease of the kidneys: with special emphasis on a relation to the duration of haemodialysis, the degree of calcium oxalate deposition, histological type, and possible tumorigenesis. Histopathology 56:384–394PubMedCrossRefGoogle Scholar
  18. 18.
    Kuroda N, Ohe C, Mikami S, Hes O, Michal M, Brunelli M, Martignoni G, Sato Y, Yoshino T, Kakehi Y, Shuin T, Lee GH (2011) Review of acquired cystic disease-associated renal cell carcinoma with focus on pathobiological aspects. Histol Histopathol 26:1215–1218PubMedGoogle Scholar
  19. 19.
    Kuroda N, Shiotsu T, Hes O, Michal M, Shuin T, Lee GH (2011) Acquired cystic disease-associated renal cell carcinoma with gain of chromosomes 3, 7, and 16, gain of chromosome X, and loss of chromosome Y. Med Mol Morphol 43:231–234CrossRefGoogle Scholar
  20. 20.
    Pan CC, Chen YJ, Chang LC, Chang YH, Ho DM (2009) Immunohistochemical and molecular genetic profiling of acquired cystic disease-associated renal cell carcinoma. Histopathology 55:145–153PubMedCrossRefGoogle Scholar
  21. 21.
    Kuroda N, Tamura M, Hamaguchi N, Mikami S, Pan CC, Brunelli M, Martignoni G, Hes O, Michal M, Lee GH (2011) Acquired cystic disease-associated renal cell carcinoma with sarcomatoid change and rhabdoid features. Ann Diagn Pathol 15:462–466PubMedCrossRefGoogle Scholar
  22. 22.
    Inoue T, Matsuura K, Yoshimoto T, Nguyen LT, Tsukamoto Y, Nakada C, Hijiya N, Narimatsu T, Nomura T, Sato F, Nagashima Y, Kashima K, Hatakeyama S, Ohyama C, Numakura K, Habuchi T, Nakagawa M, Seto M, Mimata H, Moriyama M (2012) Genomic profiling of renal cell carcinoma in patients with end-stage renal disease. Cancer Sci 103:569–576PubMedCrossRefGoogle Scholar
  23. 23.
    Yamaguchi T, Kuroda N, Kawada T, Imamura Y (2012) Imprint cytological findings of acquired cystic disease-associated renal-cell carcinoma: a close relationship to papillary renal-cell carcinoma. Diagn Cytopathol 40:844–846PubMedCrossRefGoogle Scholar
  24. 24.
    Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF, Sinescu IC (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406PubMedCrossRefGoogle Scholar
  25. 25.
    Motzer RJ, Agarwal N, Beard C, Bolger GB, Boston B, Carducci MA, Choueiri TK, Figlin RA, Fishman M, Hancock SL, Hudes GR, Jonasch E, Kessinger A, Kuzel TM, Lange PH, Levine EG, Margolin KA, Michaelson MD, Olencki T, Pili R, Redman BG, Robertson CN, Schwartz LH, Sheinfeld J, Wang J (2009) NCCN clinical practice guidelines in oncology: kidney cancer. J Natl Compr Canc Netw 7:618–630PubMedGoogle Scholar
  26. 26.
    Yuasa T, Takahashi S, Hatake K, Yonese J, Fukui I (2011) Biomarkers to predict response to sunitinib therapy and prognosis in metastatic renal cell cancer. Cancer Sci 102:1949–1957PubMedCrossRefGoogle Scholar
  27. 27.
    Choueiri TK, Regan MM, Rosenberg JE, Oh WK, Clement J, Amato AM, McDermott D, Cho DC, Atkins MB, Signoretti S (2010) Carbonic anhydrase IX and pathological features as predictors of outcome in patients with metastatic clear-cell renal cell carcinoma receiving vascular endothelial growth factor-targeted therapy. BJU Int 106:772–778PubMedCrossRefGoogle Scholar
  28. 28.
    Paule B, Bastien L, Deslandes E, Cussenot O, Podgorniak MP, Allory Y, Naimi B, Porcher R, de La Taille A, Menashi S, Calvo F, Mourah S (2010) Soluble isoforms of vascular endothelial growth factor are predictors of response to sunitinib in metastatic renal cell carcinomas. PLoS ONE 5:e10715PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, Negrier S, Chevreau C, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Anderson S, Hofilena G, Shan M, Pena C, Lathia C, Bukowski RM (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27:3312–3318PubMedCrossRefGoogle Scholar
  30. 30.
    Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, O’Toole T, Gibbons J, Belldegrun AS, Figlin RA (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109:2257–2267PubMedCrossRefGoogle Scholar
  31. 31.
    Inoue H, Nonomura N, Kojima Y, Shiba M, Oka D, Arai Y, Nakayama M, Takayama H, Nishimura K, Mori H, Okuyama A (2007) Somatic mutations of the von Hippel–Lindau disease gene in renal carcinomas occurring in patients with long-term dialysis. Nephrol Dial Transplant 22:2052–2055PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2013

Authors and Affiliations

  • Soomin Ahn
    • 1
  • Ghee Young Kwon
    • 1
  • Yong Mee Cho
    • 2
  • Sun-Young Jun
    • 3
  • Chan Choi
    • 4
  • Hyun-Jung Kim
    • 5
  • Yong Wook Park
    • 6
  • Weon Seo Park
    • 7
  • Jung Won Shim
    • 8
  1. 1.Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  2. 2.Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  3. 3.Department of Pathology, Incheon St. Mary’s HospitalCatholic University of Korea College of MedicineIncheonKorea
  4. 4.Department of PathologyChonnam National University Medical SchoolChonnamKorea
  5. 5.Department of Pathology, Sanggye Paik HospitalInje UniverisitySeoulKorea
  6. 6.Department of Pathology, Guri HospitalHanyang UniversityGuriKorea
  7. 7.Department of PathologyNational Cancer CenterGoyangKorea
  8. 8.Department of PathologyHangang Sacred Heart HospitalSeoulKorea

Personalised recommendations