Medical Molecular Morphology

, Volume 45, Issue 2, pp 59–65 | Cite as

Nestin and other putative cancer stem cell markers in pancreatic cancer

Review

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis. Recent studies have shown that cancer stem cells (CSCs), which have the potential to self-renew and are pluripotent, are crucially important in cancer cell growth, invasion, metastasis, and recurrence. Recently, several CSC-specific markers for pancreatic cancer have been reported, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin, but their use is controversial. Nestin is one of the class VI intermediate filament proteins and a marker of exocrine progenitors of normal pancreatic tissue. Activated mutations of K-ras in nestin-positive progenitors of pancreatic tissue have been reported to induce cell growth in vitro and induce the formation of precancerous pancreatic lesions. We have reported that downregulation of nestin in PDAC cells inhibits liver metastasis in vivo. Nestin may modulate the invasion and metastasis of nestin-positive progenitor cells during PDAC development and may serve as a novel target for suppressing invasion and metastasis in PDAC. In this review, we summarize what is known about the correlation between PDAC and CSC markers, including nestin.

Key words

Cancer stem cell Pancreatic cancer Precancerous lesion Nestin Intermediate filament 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  2. 2.
    Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26:2806–812PubMedCrossRefGoogle Scholar
  3. 3.
    Hermann PC, Mueller MT, Heeschen C (2009) Pancreatic cancer stem cells — insights and perspectives. Expert Opin Biol Ther 9: 1271–1278PubMedCrossRefGoogle Scholar
  4. 4.
    Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ (2009) Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 395:1–10PubMedCrossRefGoogle Scholar
  5. 5.
    Lonardo E, Hermann PC, Heeschen C (2010) Pancreatic cancer stem cells: update and future perspectives. Mol Oncol 4:431–442PubMedCrossRefGoogle Scholar
  6. 6.
    Chuthapisith S, Eremin J, El-Sheemey M, Eremin O (2010) Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol 19:27–32PubMedCrossRefGoogle Scholar
  7. 7.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRefGoogle Scholar
  8. 8.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRefGoogle Scholar
  9. 9.
    De Santis M, Di Gianantonio E, Cesari E, Ambrosini G, Straface G, Clementi M (2009) First-trimester itraconazole exposure and pregnancy outcome: a prospective cohort study of women contacting teratology information services in Italy. Drug Saf 32:239–244PubMedCrossRefGoogle Scholar
  10. 10.
    Ishiwata T, Matsuda Y, Naito Z (2011) Nestin in gastrointestinal and other cancers: effects on cells and tumor angiogenesis. World J Gastroenterol 17:409–418PubMedCrossRefGoogle Scholar
  11. 11.
    Kawamoto M, Ishiwata T, Cho K, Uchida E, Korc M, Naito Z, Tajiri T (2009) Nestin expression correlates with nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum Pathol 40:189–198PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T (2011) Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 11:512–523PubMedCrossRefGoogle Scholar
  13. 13.
    Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249PubMedCrossRefGoogle Scholar
  14. 14.
    Sarkar FH, Li Y, Wang Z, Kong D (2009) Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 64:489–500PubMedGoogle Scholar
  15. 15.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedCrossRefGoogle Scholar
  16. 16.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells — perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  17. 17.
    Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23PubMedGoogle Scholar
  18. 18.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  19. 19.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature (Lond) 367:645–648CrossRefGoogle Scholar
  20. 20.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  21. 21.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature (Lond) 432:396–401CrossRefGoogle Scholar
  22. 22.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104: 973–978PubMedCrossRefGoogle Scholar
  23. 23.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514PubMedCrossRefGoogle Scholar
  24. 24.
    Ricci-Vitiani L, Pagliuca A, Palio E, Zeuner A, De Maria R (2008) Colon cancer stem cells. Gut 57:538–548PubMedCrossRefGoogle Scholar
  25. 25.
    Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556PubMedCrossRefGoogle Scholar
  26. 26.
    Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4807–4815PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320PubMedCrossRefGoogle Scholar
  28. 28.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  29. 29.
    Lonardo E, Hermann PC, Heeschen C (2011) Pancreatic cancer stem cells: update and future perspectives. Mol Oncol 4:431–442CrossRefGoogle Scholar
  30. 30.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedCrossRefGoogle Scholar
  31. 31.
    Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302PubMedCrossRefGoogle Scholar
  32. 32.
    Zhu L, Shi G, Schmidt CM, Hruban RH, Konieczny SF (2007) Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am J Pathol 171:263–273PubMedCrossRefGoogle Scholar
  33. 33.
    Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, Furth EE, Furukawa T, Klein A, Klimstra DS, Kloppel G, Lauwers GY, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Perez-Gallego L, Redston M, Tuveson DA (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106PubMedCrossRefGoogle Scholar
  34. 34.
    Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H (2007) Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132:720–732PubMedCrossRefGoogle Scholar
  35. 35.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature (Lond) 444:756–760CrossRefGoogle Scholar
  36. 36.
    Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH (2011) Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112(9):2296–2306PubMedCrossRefGoogle Scholar
  37. 37.
    Hong SP, Wen J, Bang S, Park S, Song SY (2009) CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 125:2323–2331PubMedCrossRefGoogle Scholar
  38. 38.
    Marechal R, Demetter P, Nagy N, Berton A, Decaestecker C, Polus M, Closset J, Deviere J, Salmon I, Van Laethem JL (2009) High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer 100:1444–1451PubMedCrossRefGoogle Scholar
  39. 39.
    Ikenaga N, Ohuchida K, Mizumoto K, Yu J, Kayashima T, Hayashi A, Nakata K, Tanaka M (2010) Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum Pathol 41:1466–1474PubMedCrossRefGoogle Scholar
  40. 40.
    Huang P, Wang CY, Gou SM, Wu HS, Liu T, Xiong JX (2008) Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World J Gastroenterol 14:3903–3907PubMedCrossRefGoogle Scholar
  41. 41.
    Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6:92–97PubMedGoogle Scholar
  42. 42.
    Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH, Pasca di Magliano M, Simeone DM (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141:2218–2227, e5PubMedCrossRefGoogle Scholar
  43. 43.
    Kelleher FC (2011) Hedgehog signaling and therapeutics in pancreatic cancer. Carcinogenesis (Oxf) 32:445–451CrossRefGoogle Scholar
  44. 44.
    Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10PubMedCrossRefGoogle Scholar
  45. 45.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  46. 46.
    Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824PubMedCrossRefGoogle Scholar
  47. 47.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature (Lond) 445:106–110CrossRefGoogle Scholar
  48. 48.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature (Lond) 445:111–115CrossRefGoogle Scholar
  49. 49.
    Shepherd CJ, Rizzo S, Ledaki I, Davies M, Brewer D, Attard G, de Bono J, Hudson DL (2008) Expression profiling of CD133+ and CD133− epithelial cells from human prostate. Prostate 68:1007–1024PubMedCrossRefGoogle Scholar
  50. 50.
    Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48PubMedCrossRefGoogle Scholar
  51. 51.
    Maeda S, Shinchi H, Kurahara H, Mataki Y, Maemura K, Sato M, Natsugoe S, Aikou T, Takao S (2008) CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer 98:1389–1397PubMedCrossRefGoogle Scholar
  52. 52.
    Thomas RM, Kim J, Revelo-Penafiel MP, Angel R, Dawson DW, Lowy AM (2008) The chemokine receptor CXCR4 is expressed in pancreatic intraepithelial neoplasia. Gut 57:1555–1560PubMedCrossRefGoogle Scholar
  53. 53.
    Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, Garcia-Garcia E, Lopez-Rios F, Matsui W, Maitra A, Hidalgo M (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8:310–314PubMedCrossRefGoogle Scholar
  54. 54.
    Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J, Wirth T, Schemmer P, Buchler MW, Zoller M, Salnikov AV, Herr I (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70:5004–5013PubMedCrossRefGoogle Scholar
  55. 55.
    Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB, Gallick GE (2011) ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 6:e20636PubMedCrossRefGoogle Scholar
  56. 56.
    Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Butzow R, Coukos G, Zhang L (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5:e10277PubMedCrossRefGoogle Scholar
  57. 57.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCrossRefGoogle Scholar
  58. 58.
    Bhagwandin VJ, Shay JW (2009) Pancreatic cancer stem cells: fact or fiction? Biochim Biophys Acta 1792:248–259PubMedGoogle Scholar
  59. 59.
    Wang YH, Li F, Luo B, Wang XH, Sun HC, Liu S, Cui YQ, Xu XX (2009) A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 56:371–378PubMedCrossRefGoogle Scholar
  60. 60.
    Burkert J, Otto WR, Wright NA (2008) Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 214: 564–573PubMedCrossRefGoogle Scholar
  61. 61.
    Gou S, Liu T, Wang C, Yin T, Li K, Yang M, Zhou J (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34:429–435PubMedCrossRefGoogle Scholar
  62. 62.
    Gaviraghi M, Tunici P, Valensin S, Rossi M, Giordano C, Magnoni L, Dandrea M, Montagna L, Ritelli R, Scarpa A, Bakker A (2011) Pancreatic cancer spheres are more than just aggregates of stem marker-positive cells. Biosci Rep 31:45–55PubMedCrossRefGoogle Scholar
  63. 63.
    Yin T, Wei H, Gou S, Shi P, Yang Z, Zhao G, Wang C (2011) Cancer stem-like cells enriched in panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci 12:1595–1604PubMedCrossRefGoogle Scholar
  64. 64.
    Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595PubMedCrossRefGoogle Scholar
  65. 65.
    Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12:79–90PubMedCrossRefGoogle Scholar
  66. 66.
    Sahlgren CM, Mikhailov A, Hellman J, Chou YH, Lendahl U, Goldman RD, Eriksson JE (2001) Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem 276:16456–16463PubMedCrossRefGoogle Scholar
  67. 67.
    Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106(pt 4):1291–1300PubMedGoogle Scholar
  68. 68.
    Frojdman K, Pelliniemi LJ, Lendahl U, Virtanen I, Eriksson JE (1997) The intermediate filament protein nestin occurs transiently in differentiating testis of rat and mouse. Differentiation (Camb) 61:243–249Google Scholar
  69. 69.
    Hoffman RM (2007) The potential of nestin-expressing hair follicle stem cells in regenerative medicine. Expert Opin Biol Ther 7:289–291PubMedCrossRefGoogle Scholar
  70. 70.
    Ishizaki M, Ishiwata T, Adachi A, Tamura N, Ghazizadeh M, Kitamura H, Sugisaki Y, Yamanaka N, Naito Z, Fukuda Y (2006) Expression of nestin in rat and human glomerular podocytes. J Submicrosc Cytol Pathol 38:193–200PubMedGoogle Scholar
  71. 71.
    Ishiwata T, Kudo M, Onda M, Fujii T, Teduka K, Suzuki T, Korc M, Naito Z (2006) Defined localization of nestin-expressing cells in l-arginine-induced acute pancreatitis. Pancreas 32:360–368PubMedCrossRefGoogle Scholar
  72. 72.
    Yamada H, Takano T, Ito Y, Matsuzuka F, Miya A, Kobayashi K, Yoshida H, Watanabe M, Iwatani Y, Miyauchi A (2009) Expression of nestin mRNA is a differentiation marker in thyroid tumors. Cancer Lett 280:61–64PubMedCrossRefGoogle Scholar
  73. 73.
    Strojnik T, Rosland GV, Sakariassen PO, Kavalar R, Lah T (2007) Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 68:133–143; discussion 143–144PubMedCrossRefGoogle Scholar
  74. 74.
    Florenes VA, Holm R, Myklebost O, Lendahl U, Fodstad O (1994) Expression of the neuroectodermal intermediate filament nestin in human melanomas. Cancer Res 54:354–356PubMedGoogle Scholar
  75. 75.
    Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, Godwin AK, Wells W, DiRenzo J (2007) Nestin is expressed in the basal/ myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res 67:501–510PubMedCrossRefGoogle Scholar
  76. 76.
    Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI, Berman DM (2007) Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res 67:9199–9206PubMedCrossRefGoogle Scholar
  77. 77.
    Sarlomo-Rikala M, Tsujimura T, Lendahl U, Miettinen M (2002) Patterns of nestin and other intermediate filament expression distinguish between gastrointestinal stromal tumors, leiomyomas and schwannomas. APMIS 110:499–507PubMedCrossRefGoogle Scholar
  78. 78.
    Ishiwata T, Teduka K, Yamamoto T, Kawahara K, Matsuda Y, Naito Z (2011) Neuroepithelial stem cell marker nestin regulates the migration, invasion and growth of human gliomas. Oncol Rep 26: 91–99PubMedGoogle Scholar
  79. 79.
    Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273PubMedCrossRefGoogle Scholar
  80. 80.
    Bentivegna A, Conconi D, Panzeri E, Sala E, Bovo G, Vigano P, Brunelli S, Bossi M, Tredici G, Strada G, Dalpra L (2010) Biological heterogeneity of putative bladder cancer stem-like cell populations from human bladder transitional cell carcinoma samples. Cancer Sci 101:416–424PubMedCrossRefGoogle Scholar
  81. 81.
    Okuno K, Ohta S, Kato H, Taga T, Sugita K, Takeuchi Y (2010) Expression of neural stem cell markers in malignant rhabdoid tumor cell lines. Oncol Rep 23:485–492PubMedGoogle Scholar
  82. 82.
    Kasper S (2008) Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Rev 4:193–201PubMedCrossRefGoogle Scholar
  83. 83.
    Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586PubMedCrossRefGoogle Scholar
  84. 84.
    Carriere C, Seeley ES, Goetze T, Longnecker DS, Korc M (2007) The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl Acad Sci USA 104:4437–4442PubMedCrossRefGoogle Scholar
  85. 85.
    Fendrich V, Esni F, Garay MV, Feldmann G, Habbe N, Jensen JN, Dor Y, Stoffers D, Jensen J, Leach SD, Maitra A (2008) Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135:621–631PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2012

Authors and Affiliations

  1. 1.Departments of Pathology and Integrative Oncological PathologyNippon Medical SchoolTokyoJapan

Personalised recommendations