Advertisement

Medical Molecular Morphology

, Volume 46, Issue 1, pp 14–19 | Cite as

Identification of DNA-dependent protein kinase catalytic subunit as a novel interaction partner of lymphocyte enhancer factor 1

  • Atsushi ShimomuraEmail author
  • Akihiko Takasaki
  • Ryuji Nomura
  • Nobuhiro Hayashi
  • Takao Senda
Original Paper

Abstract

Lymphocyte enhancer factor 1 (LEF1), a member of the LEF/T-cell-specific factor (TCF) family of the high mobility group domain transcription factors, acts downstream in canonical Wnt signaling. Aberrant transactivation of LEF1 contributes to the tumorigenesis of colonic neoplasms, sebaceous skin tumors, and lymphoblastic leukemia. LEF1-associated proteins are crucial for regulating its transcriptional activity. In this study, glutathione-S-transferase pull-down assay and mass spectrometry enabled identification of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a novel interaction partner for LEF1. The interaction between LEF1 and DNA-PKcs was confirmed using in vivo co-immunoprecipitation. Furthermore, double immunofluorescence observations showed that LEF1 and DNA-PKcs colocalized in the nuclei of colon adenocarcinoma cell lines. Identification of the interaction between LEF1 and DNA-PKcs may provide clues for a novel therapy for cancer treatment as well as for understanding LEF1-mediated transcriptional regulation.

Keywords

DNA-dependent catalytic subunit (DNA-PKcs) Lymphocyte enhancer factor 1 (LEF-1) Novel interaction partner Colon adenocarcinoma cell Thymus Glutathione-S-transferase pull-down assay Mass spectrometry 

Notes

Acknowledgments

We thank Kazuhiro Yanagisawa, Yohei Takeuchi, and Kazuko Hikita from the Department of Anatomy I, Fujita Health University School of Medicine, for their technical and secretarial assistance. This work was supported by a Grant-in-Aid from JSPS KAKENHI Grant Number 24592567 and by grants from the Promotion and Mutual Aid Corporation for Private Schools of Japan and from the Fujita Health University Research Fund.

References

  1. 1.
    Shimomura A, Ohkuma M, Iizuka-Kogo A, Kohu K, Nomura R, Miyachi E, Akiyama T, Senda T (2007) Requirement of the tumour suppressor APC for the clustering of PSD-95 and AMPA receptors in hippocampal neurons. Eur J Neurosci 26:903–912PubMedCrossRefGoogle Scholar
  2. 2.
    Senda T, Shimomura A, Iizuka-Kogo A (2005) Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 80:121–131PubMedCrossRefGoogle Scholar
  3. 3.
    Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890PubMedCrossRefGoogle Scholar
  4. 4.
    Bienz M, Clevers H (2003) Armadillo/beta-catenin signals in the nucleus: proof beyond a reasonable doubt? Nat Cell Biol 5:179–182PubMedCrossRefGoogle Scholar
  5. 5.
    Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D, Xu W (2004) Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell 15:523–533PubMedCrossRefGoogle Scholar
  6. 6.
    Xing Y, Clements WK, Kimelman D, Xu W (2003) Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev 17:2753–2764PubMedCrossRefGoogle Scholar
  7. 7.
    Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) Beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 96:6273–6278PubMedCrossRefGoogle Scholar
  8. 8.
    Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13:149–156PubMedCrossRefGoogle Scholar
  9. 9.
    Waterman ML, Fischer WH, Jones KA (1991) A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev 5:656–669PubMedCrossRefGoogle Scholar
  10. 10.
    Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, Feinstein E, Einat P, Ben-Ze’ev A (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16:2058–2072PubMedCrossRefGoogle Scholar
  11. 11.
    Takeda H, Lyle S, Lazar AJ, Zouboulis CC, Smyth I, Watt FM (2006) Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med 12:395–397PubMedCrossRefGoogle Scholar
  12. 12.
    Gutierrez A, Sanda T, Ma W, Zhang J, Grebliunaite R, Dahlberg S, Neuberg D, Protopopov A, Winter SS, Larson RS, Borowitz MJ, Silverman LB, Chin L, Hunger SP, Jamieson C, Sallan SE, Look AT (2010) Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 115:2845–2851PubMedCrossRefGoogle Scholar
  13. 13.
    Tandon B, Peterson L, Gao J, Nelson B, Ma S, Rosen S, Chen YH (2011) Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol 24:1433–1443PubMedCrossRefGoogle Scholar
  14. 14.
    Sierra J, Yoshida T, Joazeiro CA, Jones KA (2006) The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20:586–600PubMedCrossRefGoogle Scholar
  15. 15.
    Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961PubMedCrossRefGoogle Scholar
  16. 16.
    Peterson SR, Jesch SA, Chamberlin TN, Dvir A, Rabindran SK, Wu C, Dynan WS (1995) Stimulation of the DNA-dependent protein kinase by RNA polymerase II transcriptional activator proteins. J Biol Chem 270:1449–1454PubMedCrossRefGoogle Scholar
  17. 17.
    Lees-Miller SP, Chen YR, Anderson CW (1990) Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 10:6472–6481PubMedGoogle Scholar
  18. 18.
    Lebrun P, Montminy MR, Van Obberghen E (2005) Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem 280:38203–38210PubMedCrossRefGoogle Scholar
  19. 19.
    Ishiguro A, Ideta M, Mikoshiba K, Chen DJ, Aruga J (2007) ZIC2-dependent transcriptional regulation is mediated by DNA-dependent protein kinase, poly(ADP-ribose) polymerase, and RNA helicase A. J Biol Chem 282:9983–9995PubMedCrossRefGoogle Scholar
  20. 20.
    Schild-Poulter C, Shih A, Yarymowich NC, Hache RJ (2003) Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer Res 63:7197–7205PubMedGoogle Scholar
  21. 21.
    Chibazakura T, Watanabe F, Kitajima S, Tsukada K, Yasukochi Y, Teraoka H (1997) Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase: synergistic stimulation of RNA polymerase II basal transcription in vitro. Eur J Biochem 247:1166–1173PubMedCrossRefGoogle Scholar
  22. 22.
    Mukherjee B, Kessinger C, Kobayashi J, Chen BP, Chen DJ, Chatterjee A, Burma S (2006) DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair (Amst) 5:575–590CrossRefGoogle Scholar
  23. 23.
    Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26:1551–1559PubMedCrossRefGoogle Scholar
  24. 24.
    Giffin W, Torrance H, Rodda DJ, Prefontaine GG, Pope L, Hache RJ (1996) Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature (Lond) 380:265–268CrossRefGoogle Scholar
  25. 25.
    Idogawa M, Masutani M, Shitashige M, Honda K, Tokino T, Shinomura Y, Imai K, Hirohashi S, Yamada T (2007) Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67:911–918PubMedCrossRefGoogle Scholar
  26. 26.
    Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 97:8358–8363PubMedCrossRefGoogle Scholar
  27. 27.
    Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature (Lond) 403:781–785CrossRefGoogle Scholar
  28. 28.
    Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, Nakanishi M (2008) Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132:221–232PubMedCrossRefGoogle Scholar
  29. 29.
    Gentile M, Latonen L, Laiho M (2003) Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res 31:4779–4790PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2012

Authors and Affiliations

  • Atsushi Shimomura
    • 1
    Email author
  • Akihiko Takasaki
    • 2
  • Ryuji Nomura
    • 1
  • Nobuhiro Hayashi
    • 3
  • Takao Senda
    • 1
  1. 1.Department of Anatomy IFujita Health University School of MedicineToyoakeJapan
  2. 2.Department of Medical TechnologySchool of Health Sciences, Gifu University of Medical ScienceSekiJapan
  3. 3.Department of Life ScienceGraduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations