Medical Molecular Morphology

, Volume 45, Issue 1, pp 1–6 | Cite as

Application of in utero electroporation and live imaging in the analyses of neuronal migration during mouse brain development

  • Yoshiaki V. Nishimura
  • Tomoyasu Shinoda
  • Yutaka Inaguma
  • Hidenori Ito
  • Koh-ichi Nagata
Award Review


Correct neuronal migration is crucial for brain architecture and function. During cerebral cortex development (corticogenesis), excitatory neurons generated in the proliferative zone of the dorsal telencephalon (mainly ventricular zone) move through the intermediate zone and migrate past the neurons previously located in the cortical plate and come to rest just beneath the marginal zone. The in utero electroporation technique is a powerful method for rapid gain- and loss-of-function studies of neuronal development, especially neuronal migration. This method enabled us to introduce genes of interest into ventricular zone progenitor cells of mouse embryos and to observe resulting phenotypes such as proliferation, migration, and cell morphology at later stages. In this Award Lecture Review, we focus on the application of the in utero electroporation method to functional analyses of cytoskeleton-related protein septin. We then refer to, as an advanced technique, the in utero electroporation-based real-time imaging method for analyses of cell signaling regulating neuronal migration. The in utero electroporation method and its application would contribute to medical molecular morphology through identification and characterization of the signaling pathways disorganized in various neurological and psychiatric disorders.

Key words

Septin Cell signaling In utero electroporation Neuronal migration Live imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399PubMedCrossRefGoogle Scholar
  2. 2.
    Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663PubMedCrossRefGoogle Scholar
  3. 3.
    Rakic P (1990) Principles of neural cell migration. Experientia (Basel) 46:882–891CrossRefGoogle Scholar
  4. 4.
    Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359PubMedCrossRefGoogle Scholar
  5. 5.
    Clark GD (2002) Brain development and the genetics of brain development. Neurol Clin 20:917–939PubMedCrossRefGoogle Scholar
  6. 6.
    Ho W, Uniyal S, Meakin SO, Morris VL, Chan BM (2001) A differential role of extracellular signal-regulated kinase in stimulated PC12 pheochromocytoma cell movement. Exp Cell Res 263:254–264PubMedCrossRefGoogle Scholar
  7. 7.
    Caric D, Raphael H, Viti J, Feathers A, Wancio D, Lillien L (2001) EGFRs mediate chemotactic migration in the developing telencephalon. Development (Camb) 128:4203–4216Google Scholar
  8. 8.
    Olson EC, Walsh CA (2002) Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev 12:320–327PubMedCrossRefGoogle Scholar
  9. 9.
    Gupta A, Tsai LH, Wynshaw-Boris A (2002) Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3:342–355PubMedCrossRefGoogle Scholar
  10. 10.
    Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178PubMedCrossRefGoogle Scholar
  11. 11.
    Sugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, Otani H, Sakagami H, Kondo H, Nozawa S, Aiba A, Katsuki M (1998) Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17:3427–3433PubMedCrossRefGoogle Scholar
  12. 12.
    Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature (Lond) 377:539–544CrossRefGoogle Scholar
  13. 13.
    Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771PubMedGoogle Scholar
  14. 14.
    Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89:115–124PubMedCrossRefGoogle Scholar
  15. 15.
    Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872PubMedCrossRefGoogle Scholar
  16. 16.
    Inoue T, Krumlauf R (2001) An impulse to the brain — using in vivo electroporation. Nat Neurosci 4:1156–1158PubMedCrossRefGoogle Scholar
  17. 17.
    Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246PubMedCrossRefGoogle Scholar
  18. 18.
    Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2003) The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J 22:4190–4201PubMedCrossRefGoogle Scholar
  19. 19.
    Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276PubMedCrossRefGoogle Scholar
  20. 20.
    Spiliotis ET, Nelson WJ (2006) Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119:4–10PubMedCrossRefGoogle Scholar
  21. 21.
    Kinoshita M (2006) Diversity of septin scaffolds. Curr Opin Cell Biol 18:54–60PubMedCrossRefGoogle Scholar
  22. 22.
    Barral Y, Kinoshita M (2008) Structural insights shed light onto septin assemblies and function. Curr Opin Cell Biol 20:12–18PubMedCrossRefGoogle Scholar
  23. 23.
    Trimble WS (1999) Septins: a highly conserved family of membrane-associated GTPases with functions in cell division and beyond. J Membr Biol 169:75–81PubMedCrossRefGoogle Scholar
  24. 24.
    Field CM, Kellogg D (1999) Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol 9:387–394PubMedCrossRefGoogle Scholar
  25. 25.
    Longtine MS, DeMarini DJ, Valencik ML, Al-Awar OS, Fares H, De Virgilio C, Pringle JR (1996) The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 8:106–119PubMedCrossRefGoogle Scholar
  26. 26.
    Dobbelaere J, Barral Y (2004) Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305: 393–396PubMedCrossRefGoogle Scholar
  27. 27.
    Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD (2000) Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:341–344PubMedCrossRefGoogle Scholar
  28. 28.
    Lew DJ (2003) The morphogenesis checkpoint: how yeast cells watch their figures. Curr Opin Cell Biol 15:648–653PubMedCrossRefGoogle Scholar
  29. 29.
    Kinoshita A, Noda M, Kinoshita M (2000) Differential localization of septins in the mouse brain. J Comp Neurol 428:223–239PubMedCrossRefGoogle Scholar
  30. 30.
    Ito H, Atsuzawa K, Morishita R, Usuda N, Sudo K, Iwamoto I, Mizutani K, Katoh-Semba R, Nozawa Y, Asano T, Nagata K (2009) Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J Neurochem 108:867–880PubMedCrossRefGoogle Scholar
  31. 31.
    Ihara M, Yamasaki N, Hagiwara A, Tanigaki A, Kitano A, Hikawa R, Tomimoto H, Noda M, Takanashi M, Mori H, Hattori N, Miyakawa T, Kinoshita M (2007) Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron 53:519–533PubMedCrossRefGoogle Scholar
  32. 32.
    Hanai N, Nagata K, Kawajiri A, Shiromizu T, Saitoh N, Hasegawa Y, Murakami S, Inagaki M (2004) Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett 568: 83–88PubMedCrossRefGoogle Scholar
  33. 33.
    Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439PubMedCrossRefGoogle Scholar
  34. 34.
    Dent J, Kato K, Peng XR, Martinez C, Cattaneo M, Poujol C, Nurden P, Nurden A, Trimble WS, Ware J (2002) A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci USA 99:3064–3069PubMedCrossRefGoogle Scholar
  35. 35.
    Beites CL, Campbell KA, Trimble WS (2005) The septin Sept5/ CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 385:347–353PubMedCrossRefGoogle Scholar
  36. 36.
    Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279: 21003–21011PubMedCrossRefGoogle Scholar
  37. 37.
    Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(suppl 1):16–23PubMedCrossRefGoogle Scholar
  38. 38.
    Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M (2007) Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol 17:1752–1758PubMedCrossRefGoogle Scholar
  39. 39.
    Xie Y, Vessey JP, Konecna A, Dahm R, Macchi P, Kiebler MA (2007) The GTP-binding protein Septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr Biol 17:1746–1751PubMedCrossRefGoogle Scholar
  40. 40.
    Li X, Serwanski DR, Miralles CP, Nagata K, De Blas AL (2009) Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity. J Biol Chem 284:17253–17265PubMedCrossRefGoogle Scholar
  41. 41.
    Shinoda T, Ito H, Sudo K, Iwamoto I, Morishita R, Nagata K (2010) Septin 14 is involved in cortical neuronal migration via interaction with Septin 4. Mol Biol Cell 21:1324–1334PubMedCrossRefGoogle Scholar
  42. 42.
    Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC, Kennedy MB, Kinoshita M, Longtine M, Low C, Maltais LJ, McKenzie L, Mitchison TJ, Nishikawa T, Noda M, Petty EM, Peifer M, Pringle JR, Robinson PJ, Roth D, Russell SE, Stuhlmann H, Tanaka M, Tanaka T, Trimble WS, Ware J, Zeleznik-Le NJ, Zieger B (2002) Mammalian septins nomenclature. Mol Biol Cell 13:4111–4113PubMedCrossRefGoogle Scholar
  43. 43.
    Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ (2003) RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 6:1277–1283PubMedCrossRefGoogle Scholar
  44. 44.
    Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2006) Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 8:17–26PubMedCrossRefGoogle Scholar
  45. 45.
    Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Wait R, Dunn MJ, Cotter DR (2008) Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13:1102–1117PubMedCrossRefGoogle Scholar
  46. 46.
    Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669PubMedCrossRefGoogle Scholar
  47. 47.
    Suzuki G, Harper KM, Hiramoto T, Sawamura T, Lee M, Kang G, Tanigaki K, Buell M, Geyer MA, Trimble WS, Agatsuma S, Hiroi N (2009) Sept5 deficiency exerts pleiotropic influence on affective behaviors and cognitive functions in mice. Hum Mol Genet 18:1652–1660PubMedCrossRefGoogle Scholar
  48. 48.
    Engidawork E, Gulesserian T, Fountoulakis M, Lubec G (2003) Aberrant protein expression in cerebral cortex of fetus with Down syndrome. Neuroscience 122:145–154PubMedCrossRefGoogle Scholar
  49. 49.
    Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature (Lond) 409:714–720CrossRefGoogle Scholar
  50. 50.
    Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741PubMedCrossRefGoogle Scholar
  51. 51.
    Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144PubMedCrossRefGoogle Scholar
  52. 52.
    Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213PubMedCrossRefGoogle Scholar
  53. 53.
    Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69:482–497PubMedCrossRefGoogle Scholar
  54. 54.
    Nishimura YV, Sekine K, Chihama K, Nakajima K, Hoshino M, Nabeshima Y, Kawauchi T (2010) Dissecting the factors involved in the locomotion mode of neuronal migration in the developing cerebral cortex. J Biol Chem 285:5878–5887PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2012

Authors and Affiliations

  • Yoshiaki V. Nishimura
    • 1
  • Tomoyasu Shinoda
    • 1
  • Yutaka Inaguma
    • 1
  • Hidenori Ito
    • 1
  • Koh-ichi Nagata
    • 1
  1. 1.Department of Molecular Neurobiology, Institute for Developmental ResearchAichi Human Service CenterKasugai, AichiJapan

Personalised recommendations