Medical Molecular Morphology

, Volume 45, Issue 3, pp 152–160

Colocalization of APC and PSD-95 in the nerve fiber as well as in the post-synapse of matured neurons

Original Paper


Adenomatous polyposis coli protein (APC) is highly expressed in the nervous tissue, but its function there is not yet known. We previously found that the microtubule-bundling activity of APC is stimulated by its interaction with PSD-95, a neuronal scaffolding protein, in cultured COS-7 cells. In the present study, we investigated the distribution and localization of the intrinsic APC and PSD-95 in both cultured rat hippocampal neurons and in the rat cerebellum by immunofluorescence and immunoelectron microscopy. In cultured neurons, most of the PSD-95 immunofluorescence puncta were colocalized with APC, and the APC and PSD-95 immunogolds were colocalized in the nerve fibers as well as in the postsynaptic site, but not in the presynaptic site. In the molecular layer of the rat cerebellum, colocalization of APC and PSD-95 was also detected in the nerve fibers and the postsynaptic site, but not in the presynaptic site. Based on these results, we conclude that APC and PSD-95 colocalize and bind to form a protein complex in nerve fibers as well as in postsynaptic sites in matured neurons, suggesting the involvement of the APC/PSD-95 complex in the microtubule functions within the nerve fibers and the synapse functions at the postsynaptic site.

Key words

APC PSD-95 Nerve fiber Postsynaptic site Cultured neuron Cerebellum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takamori N, Shimomura A, Senda T (2006) Microtubule-bundling activity of APC is stimulated by interaction with PSD-95. Neurosci Lett 403:68–72PubMedCrossRefGoogle Scholar
  2. 2.
    Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, Sargeant L, Krapcho K, Wolff E, Burt R, Hughes JP, Warrington J, McPherson J, Wasmuth J, LePasler D, Abderrahim H, Cohen D, Leppert M, White R (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  3. 3.
    Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedCrossRefGoogle Scholar
  4. 4.
    Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669PubMedCrossRefGoogle Scholar
  5. 5.
    Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature (Lond) 359:235–237CrossRefGoogle Scholar
  6. 6.
    Nagase H, Nakamura Y (1993) Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 2:425–434PubMedCrossRefGoogle Scholar
  7. 7.
    Goss KH, Groden J (2000) Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 18:1967–1979PubMedGoogle Scholar
  8. 8.
    Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733PubMedCrossRefGoogle Scholar
  9. 9.
    Senda T, Shimomura A, Iizuka-Kogo A (2005) Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 80:121–131PubMedCrossRefGoogle Scholar
  10. 10.
    Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40:68–81PubMedCrossRefGoogle Scholar
  11. 11.
    Midgley CA, White S, Howitt R, Save V, Dunlop MG, Hall PA, Lane DP, Wyllie AH, Bubb VJ (1997) APC expression in normal human tissues. J Pathol 181:426–433PubMedCrossRefGoogle Scholar
  12. 12.
    Miyashiro I, Senda T, Matsumine A, Baeg GH, Kuroda T, Shimano T, Miura S, Noda T, Kobayashi S, Monden M, Toyoshima K, Akiyama T (1995) Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11:89–96PubMedGoogle Scholar
  13. 13.
    Senda T, Miyashiro I, Matsumine A, Baeg GH, Monden T, Kobayashil S, Monden M, Toyoshima K, Akiyama T (1996) The tumor suppressor protein APC colocalizes with beta-catenin in the colon epithelial cells. Biochem Biophys Res Commun 223:329–334PubMedCrossRefGoogle Scholar
  14. 14.
    Iwamoto M, Ahnen DJ, Franklin WA, Maltzman TH (2000) Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis (Oxf) 21:1935–1940CrossRefGoogle Scholar
  15. 15.
    Bhat RV, Baraban JM, Johnson RC, Eipper BA, Mains RE (1994) High levels of expression of the tumor suppressor gene APC during development of the rat central nervous system. J Neurosci 14:3059–3071PubMedGoogle Scholar
  16. 16.
    Matsumine A, Ogai A, Senda T, Okumura N, Satoh K, Baeg GH, Kawahara T, Kobayashi S, Okada M, Toyoshima K, Akiyama T (1996) Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272:1020–1023PubMedCrossRefGoogle Scholar
  17. 17.
    Morrison EE, Askham J, Clissold P, Markham AF, Meredith DM (1997) Expression of beta-catenin and the adenomatous polyposis coli tumour suppressor protein in mouse neocortical cells in vitro. Neurosci Lett 235:129–132PubMedCrossRefGoogle Scholar
  18. 18.
    Senda T, Iino S, Matsushita K, Matsumine A, Kobayashi S, Akiyama T (1998) Localization of the adenomatous polyposis coli tumour suppressor protein in the mouse central nervous system. Neuroscience 83:857–866PubMedCrossRefGoogle Scholar
  19. 19.
    Brakeman JS, Gu SH, Wang XB, Dolin G, Baraban JM (1999) Neuronal localization of the adenomatous polyposis coli tumor suppressor protein. Neuroscience 91:661–672PubMedCrossRefGoogle Scholar
  20. 20.
    Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14:2025–2032PubMedCrossRefGoogle Scholar
  21. 21.
    Shimomura A, Kohu K, Akiyama T, Senda T (2005) Subcellular localization of the tumor suppressor protein APC in developing cultured neurons. Neurosci Lett 375:81–86PubMedCrossRefGoogle Scholar
  22. 22.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell S, Krush AJ, Berk T, Cohen Z, Tetu B, Burger PC, Wood PA, Taqi F, Booker SV, Peterson GM, Offerhaus GJA, Tersmette AC, Giardiello FM, Vogelstein B, Kinzler KW (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847PubMedCrossRefGoogle Scholar
  23. 23.
    Yanai H, Satoh K, Matsumine A, Akiyama T (2000) The colorectal tumour suppressor APC is present in the NMDA-receptor-PSD-95 complex in the brain. Genes Cells 5:815–822PubMedCrossRefGoogle Scholar
  24. 24.
    Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781PubMedCrossRefGoogle Scholar
  25. 25.
    Iizuka-Kogo A, Shimomura A, Senda T (2005) Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochem Cell Biol 123:67–73PubMedCrossRefGoogle Scholar
  26. 26.
    Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468PubMedGoogle Scholar
  27. 27.
    McGee AW, Bredt DS (2003) Assembly and plasticity of the glutamatergic postsynaptic specialization. Curr Opin Neurobiol 13: 111–118PubMedCrossRefGoogle Scholar
  28. 28.
    Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388PubMedGoogle Scholar
  29. 29.
    Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TS (2003) Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J Neurosci 23:11270–11278PubMedGoogle Scholar
  30. 30.
    Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776PubMedCrossRefGoogle Scholar
  31. 31.
    Satoh K, Yanai H, Senda T, Kohu K, Nakamura T, Okumura N, Matsumine A, Kobayashi S, Toyoshima K, Akiyama T (1997) DAP-1, a novel protein that interacts with the guanylate kinaselike domains of hDLG and PSD-95. Genes Cells 2:415–424PubMedCrossRefGoogle Scholar
  32. 32.
    Kistner U, Wenzel BM, Veh RW, Cases-Langhoff C, Garner AM, Appeltauer U, Voss B, Gundelfinger ED, Garner CC (1993) SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem 268:4580–4583PubMedGoogle Scholar
  33. 33.
    Palay SL, Chan-Palay V (1974) The basket cell. In: Cerebellar cortex, cytology and organization. Springer, New York, pp 180–216CrossRefGoogle Scholar
  34. 34.
    Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182PubMedCrossRefGoogle Scholar
  35. 35.
    Shimomura A, Ohkuma M, Iizuka-Kogo A, Kohu K, Nomura R, Miyachi E, Akiyama T, Senda T (2007) Requirement of the tumour suppressor APC for the clustering of PSD-95 and AMPA receptors in hippocampal neurons. Eur J Neurosci 26:903–912PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J, Jing Z, Zhang L, Zhou G, Braun J, Yao Y, Wang ZZ (2003) Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat Neurosci 6:1017–1018PubMedCrossRefGoogle Scholar
  37. 37.
    Temburni MK, Rosenberg MM, Pathak N, McConnell R, Jacob MH (2004) Neuronal nicotinic synapse assembly requires the adenomatous polyposis coli tumor suppressor protein. J Neurosci 24: 6776–6784PubMedCrossRefGoogle Scholar
  38. 38.
    Conroy WG, Liu Z, Nai Q, Coggan JS, Berg DK (2003) PDZcontaining proteins provide a functional postsynaptic scaffold for nicotinic receptors in neurons. Neuron 38:759–771PubMedCrossRefGoogle Scholar
  39. 39.
    Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O’Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature (Lond) 396:433–439CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2012

Authors and Affiliations

  • Takanori Onouchi
    • 1
  • Nobutaka Takamori
    • 1
  • Takao Senda
    • 1
  1. 1.Department of Anatomy IFujita Health University School of MedicineAichiJapan
  2. 2.Department of AnatomyGifu University Graduate School of MedicineYanagido, GifuJapan

Personalised recommendations