Medical Molecular Morphology

, Volume 45, Issue 1, pp 14–21

Immunohistochemical study of metaplastic carcinoma and central acellular carcinoma of the breast: central acellular carcinoma is related to metaplastic carcinoma

  • Rin Yamaguchi
  • Maki Tanaka
  • Keiko Kondo
  • Toshiro Yokoyama
  • Ichiro Maeda
  • Shin-ichi Tsuchiya
  • Miki Yamaguchi
  • Ryuji Takahashi
  • Yutaka Ogata
  • Hideyuki Abe
  • Jun Akiba
  • Osamu Nakashima
  • Masayoshi Kage
  • Hirohisa Yano
Original Paper

Abstract

Metaplastic breast cancers (MBCs) [spindle cell carcinoma (SpCC), squamous cell carcinoma (SCC), and matrix-producing carcinoma (MPC)] and invasive carcinomas with central acellular zones (CACs) were analyzed with respect to biological potential by immunohistochemical analyses. Specimens from 40 patients [20 with MBCs (7 with SCC, 6 with SpCC, 5 with MPC, and 2 with mixed type)] and 20 with CACs were analyzed using antibodies to cytokeratin (CK) 8, 5/6, 14, AE1/AE3, 34αE12, involucrin, c-kit, vimentin (VIM), alpha-smooth muscle actin, p63, epidermal growth factor receptor, epithelial cell adhesion molecule, and estrogen receptor (ER)/progesterone receptor (PR)/HER2. Expression of CK5/6, 34βE12, VIM, nuclear p63, and cytoplasmic p63 was significantly higher with MBCs than CACs (38%/13%, 70%/43%, 85%/33%, 68%/40%, and 48%/18%, respectively). Other markers were expressed at various levels in these tumors, but the difference between them was not significant. Eighteen MBC and 8 CAC cases were triple (ER/PR/HER2) negative; 17 MBCs and 7 CACs were basal-like tumors. Several differences were seen in MBCs and CACs, but they were heterogeneous, differentiating multipotentially into mesenchymal, myoepithelial, basal-like phenotypes with “stem cell-like” features. Thus, CACs are related to MBCs by immunohistochemical analyses as well as according to morphological findings.

Key words

Breast Central acellular carcinoma Metaplastic carcinoma Basal-like tumor Triple negative Ep-CAM Myoepithelial differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosen PP (2001) Rosen’s breast pathology. In: Rosen PP (ed) Carcinoma with metaplasia, 2nd edn. Lippincott-Raven, Philadelphia, pp 425–453Google Scholar
  2. 2.
    Wargotz ES, Norris HJ (1989) Metaplastic carcinomas of the breast. I. Matrix-producing carcinoma. Hum Pathol 20:628–635PubMedCrossRefGoogle Scholar
  3. 3.
    Wargotz ES, Deos PH, Norris HJ (1989) Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol 20:732–740PubMedCrossRefGoogle Scholar
  4. 4.
    Wargotz ES, Norris HJ (1989) Metaplastic carcinomas of the breast. III. Carcinosarcoma. Cancer (Phila) 64:1490–1499CrossRefGoogle Scholar
  5. 5.
    Wargotz ES, Norris HJ (1990) Metaplastic carcinomas of the breast. IV. Squamous cell carcinoma of ductal origin. Cancer (Phila) 65:272–276CrossRefGoogle Scholar
  6. 6.
    Wargotz ES, Norris HJ (1990) Metaplastic carcinomas of the breast: V. Metaplastic carcinoma with osteoclastic giant cells. Hum Pathol 21:1142–1150PubMedCrossRefGoogle Scholar
  7. 7.
    WHO classification of tumours (2003) In: Tavassoli FA, Devilli P (eds) Tumours of the breast and female genital organs. Pathology and genetics of tumours of the digestive system. World Health Organization classification of tumours. IARC Press, Lyon, pp 37–41Google Scholar
  8. 8.
    Yamaguchi R, Horii R, Maeda I, Suga S, Makita M, Iwase T, Oguchi M, Ito Y, Akiyama F (2010) Clinicopathologic study of 53 metaplastic breast carcinomas: their elements and prognostic implications. Hum Pathol 41:679–685PubMedCrossRefGoogle Scholar
  9. 9.
    Tsuda H, Takarabe T, Hasegawa T, Murata T, Hirohashi S (1999) Myoepithelial differentiation in high-grade invasive ductal carcinomas with large central acellular zones. Hum Pathol 30:1134–1139PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S (2000) Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol 24:197–202PubMedCrossRefGoogle Scholar
  11. 11.
    Sasaki Y, Tsuda H, Ueda S, Asakawa H, Seki K, Murata T, Kuriki K, Tamai S, Matsubara O (2009) Histological differences between invasive ductal carcinoma with a large central acellular zone and matrix-producing carcinoma of the breast. Pathol Int 59:390–394PubMedCrossRefGoogle Scholar
  12. 12.
    Yamaguchi R, Tanaka M, Yokoyama T, Nonaka Y, Kojima K, Terasaki H, Yamaguchi, M, Fukunaga M, Toh U, Nakashima O, Kage M, Yano H (2010) Clinicocytopathologic study of breast cancers with a ring-like appearance on ultrasonography and/or magnetic resonance imaging. Pathol Int 60:20–26CrossRefGoogle Scholar
  13. 13.
    Yamaguchi R, Tanaka M, Mizushima Y, Hirai Y, Yamaguchi M, Hiroshi Terasaki H, Yokoyama T, Tsuchiya SI, Nakashima O, Yano H (2010) “High-grade” central acellular carcinoma and matrix-producing carcinoma of the breast: correlation between ultrasonographic findings and pathological features. Med Mol Morphol 44:151–157CrossRefGoogle Scholar
  14. 14.
    Tsuda H, Sakamaki C, Fukutomi T, Hirohashi S (1997) Squamoid features and expression of involucrin in primary breast carcinoma associated with high histological grade, tumour cell necrosis and recurrence sites. Br J Cancer 75:1519–1524PubMedCrossRefGoogle Scholar
  15. 15.
    Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG, Lee AH, Robertson JF, Ellis IO (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208:495–506PubMedCrossRefGoogle Scholar
  16. 16.
    Korsching E, Packeisen J, Liedtke C, Hungermann D, Wülfing P, van Diest PJ, Brandt B, Boecker W, Buerger H (2005) The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457PubMedCrossRefGoogle Scholar
  17. 17.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997PubMedCrossRefGoogle Scholar
  18. 18.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874PubMedCrossRefGoogle Scholar
  19. 19.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basallike subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374PubMedCrossRefGoogle Scholar
  20. 20.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502PubMedCrossRefGoogle Scholar
  21. 21.
    Tsuda H, Tani Y, Weisenberger J, Kitada S, Hasegawa T, Murata T, Tamai S, Hirohashi S, Matsubara O, Natori T (2005) Frequent KIT and epidermal growth factor receptor overexpressions in undifferentiated-type breast carcinomas with “stem-cell-like” features. Cancer Sci 96:333–339PubMedCrossRefGoogle Scholar
  22. 22.
    Carter MR, Hornick JL, Lester S, Fletcher CD (2006) Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol 30:300–309PubMedGoogle Scholar
  23. 23.
    Kusafuka K, Muramatsu K, Kasami M, Kuriki K, Hirobe K, Hayashi I, Watanabe H, Hiraki Y, Shukunami C, Mochizuki T, Kameya T (2008) Cartilaginous features in matrix-producing carcinoma of the breast: four cases report with histochemical and immunohistochemical analysis of matrix molecules. Mod Pathol 21:1282–1292PubMedCrossRefGoogle Scholar
  24. 24.
    Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, Pereira EM, Lakhani SR, Schmitt FC (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology (Oxf) 49:10–21CrossRefGoogle Scholar
  25. 25.
    Yamaguchi R, Furusawa H, Nakahara H, Inomata M, Namba K, Tanaka M, Ohkuma K, Tayama K, Fujii T, Yano H, Kage M, Kojiro M (2008) Clinicopathological study of invasive ductal carcinoma with large central acellular zone: special reference to magnetic resonance imaging findings. Pathol Int 58:26–30PubMedCrossRefGoogle Scholar
  26. 26.
    Wolff AC, Hammond ME, Schwartz JN, Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, et al. (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145PubMedCrossRefGoogle Scholar
  27. 27.
    Tsuda H, Akiyama F, Kurosumi M, Sakamoto G, Watanabe T (1998) Establishment of histological criteria for high-risk node-negative breast carcinoma for a multi-institutional randomized clinical trial of adjuvant therapy. Japan National Surgical Adjuvant Study of Breast Cancer (NSAS-BC) Pathology Section. Jpn J Clin Oncol 28:486–491PubMedCrossRefGoogle Scholar
  28. 28.
    Bratthauer GL, Saenger JS, Strauss BL (2005) Antibodies targeting p63 react specifically in the cytoplasm of breast epithelial cells exhibiting secretory differentiation. Histopathology (Oxf) 47:611–616CrossRefGoogle Scholar
  29. 29.
    Xu Z, Wang W, Deng CX, Man YG (2009) Aberrant p63 and WT-1 expression in myoepithelial cells of pregnancy-associated breast cancer: implications for tumor aggressiveness and invasiveness. Int J Biol Sci 5:82–96PubMedCrossRefGoogle Scholar
  30. 30.
    Yamaguchi R, Tanaka M, Kondo K, Yokoyama T, Kaneko Y, Yamaguchi M, Ogata Y, Yano H (2010) Characteristic morphology of invasive micropapillary carcinoma of the breast: an immunohistochemical analysis. Jpn J Clin Oncol 40:781–787PubMedCrossRefGoogle Scholar
  31. 31.
    Narahashi T, Niki T, Wang T, Goto A, Matsubara D, Funata N, Fukayama M (2006) Cytoplasmic localization of p63 is associated with poor patient survival in lung adenocarcinoma. Histopathology (Oxf) 49:349–357CrossRefGoogle Scholar
  32. 32.
    Dhillon PK, Barry M, Stampfer MJ, Perner S, Fiorentino M, Fornari A, Ma J, Fleet J, Kurth T, Rubin MA, Mucci LA (2009) Aberrant cytoplasmic expression of p63 and prostate cancer mortality. Cancer Epidemiol Biomarkers Prev 18:595–600PubMedCrossRefGoogle Scholar
  33. 33.
    Kurebayashi J, Moriya T, Ishida T, Hirakawa H, Kurosumi M, Akiyama F, Kinoshita T, Takei H, Takahashi K, Ikeda M, Nakashima K (2007) The prevalence of intrinsic subtypes and prognosis in breast cancer patients of different races. Breast 16:S72–S77PubMedCrossRefGoogle Scholar
  34. 34.
    Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, Thompson EW, Byers SW, Gelmann EP (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52:5190–5197PubMedGoogle Scholar
  35. 35.
    Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685PubMedCrossRefGoogle Scholar
  36. 36.
    Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244PubMedCrossRefGoogle Scholar
  37. 37.
    Schmidt M, Hasenclever D, Schaeffer M, Boehm D, Cotarelo C, Steiner E, Lebrecht A, Siggelkow W, Weikel W, Schiffer-Petry I, Gebhard S, Pilch H, Gehrmann M, Lehr HA, Koelbl H, Hengstler JG, Schuler M (2008) Prognostic effect of epithelial cell adhesion molecule overexpression in untreated node-negative breast cancer. Clin Cancer Res 14:5849–5855PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2012

Authors and Affiliations

  • Rin Yamaguchi
    • 1
    • 4
  • Maki Tanaka
    • 3
  • Keiko Kondo
    • 4
  • Toshiro Yokoyama
    • 4
  • Ichiro Maeda
    • 6
  • Shin-ichi Tsuchiya
    • 7
  • Miki Yamaguchi
    • 3
  • Ryuji Takahashi
    • 3
  • Yutaka Ogata
    • 2
  • Hideyuki Abe
    • 5
  • Jun Akiba
    • 1
  • Osamu Nakashima
    • 1
  • Masayoshi Kage
    • 5
  • Hirohisa Yano
    • 1
  1. 1.Department of PathologyKurume University School of MedicineKurumeJapan
  2. 2.Department of SurgeryKurume University Medical CenterKurumeJapan
  3. 3.Department of SurgeryKurume Daiichi Social Insurance HospitalKurumeJapan
  4. 4.Department of PathologyKurume University Medical CenterKurumeJapan
  5. 5.Department of Diagnostic PathologyKurume University HospitalKurumeJapan
  6. 6.Department of Diagnostic PathologySt. Marianna University School of MedicineKanagawaJapan
  7. 7.Department of Diagnostic PathologyNippon Medical SchoolTokyoJapan

Personalised recommendations