Medical Molecular Morphology

, Volume 43, Issue 3, pp 145–157 | Cite as

Novel cis-active structures in the coding region mediate CRM1-dependent nuclear export of IFN-α 1 mRNA

  • Tominori KimuraEmail author
  • Iwao Hashimoto
  • Mikio Nishizawa
  • Seiji Ito
  • Hisao Yamada
Original Paper


We recently reported the chromosome region maintenance 1 (CRM1)-dependent nuclear export of intron-less human interferon-α1 (IFN-α1) mRNA, which encodes a main effecter of host innate immunity. We show that the coding region of IFN-α1 mRNA forms novel secondary structures that are responsible for the CRM1-dependent export of the transcript. Deletion-mutagenesis, in vivo export assays, and computer analyses of the folding potentials of export-competent fragments revealed the presence of a domain, termed the conserved secondary structure (CSS), comprising two adjacent putative stable stem-loop structures (nt 208–452). Internal deletion-mutagenesis and constitutive export assays of each stem-loop structure demonstrated that subregions 308–322 and 352–434 act as a core element by conferring the export function on the CSS. Leptomycin B (LMB) inhibition of the CRM1 pathway decreased the export of core element RNA, implying that the principal site of CRM1 action for exporting IFN-α1 mRNA resides within the core element. An RNPS1 (RNA-binding protein S1, serine-rich domain) cDNA was isolated by yeast three-hybrid screening, using bait containing two CSS regions. We showed that RNPS1 might recognize IFN-α1 mRNP that includes CRM1. The data demonstrate that interaction between RNA structures in the coding region and CRM1 affects the nucleocytoplasmic translocation of IFN-α1 mRNA.

Key words

Nuclear export IFN-α1 mRNA RNA secondary structure CRM1 RNA-fluorescence in situ hybridization Yeast three-hybrid assay RNPS1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature (Lond) 416:499–506CrossRefGoogle Scholar
  2. 2.
    Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512CrossRefPubMedGoogle Scholar
  3. 3.
    Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28: 215–220CrossRefPubMedGoogle Scholar
  4. 4.
    Herold A, Teixeira L, Izaurralde E (2003) Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J 22:2472–2483CrossRefPubMedGoogle Scholar
  5. 5.
    Izaurralde E (2004) Directing mRNA export. Nat Struct Mol Biol 11:210–212CrossRefPubMedGoogle Scholar
  6. 6.
    Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–531CrossRefPubMedGoogle Scholar
  7. 7.
    Sträßer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondón AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature (Lond) 417:304–308CrossRefGoogle Scholar
  8. 8.
    Erkmann JA, Kutay U (2004) Nuclear export of mRNA: from the site of transcription to the cytoplasm. Exp Cell Res 296:12–20CrossRefPubMedGoogle Scholar
  9. 9.
    Huang Z-M, Yen TSB (1995) Role of the hepatitis B virus posttranscriptional regulatory element in export of intronless transcripts. Mol Cell Biol 15:3864–3869PubMedGoogle Scholar
  10. 10.
    Popa I, Harris ME, Donello JE, Hope TJ (2002) CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22: 2057–2067CrossRefPubMedGoogle Scholar
  11. 11.
    Otero GC, Hope TJ (1998) Splicing-independent expression of the herpes simplex virus type 1 thymidine kinase gene is mediated by three cis-acting RNA subelements. J Virol 72:9889–9896PubMedGoogle Scholar
  12. 12.
    Huang Y, Carmichael GG (1997) The mouse histone H2a gene contains a small element that facilitates cytoplasmic accumulation of intronless gene transcripts and of unspliced HIV-1-related mRNAs. Proc Natl Acad Sci U S A 94:10104–10109CrossRefPubMedGoogle Scholar
  13. 13.
    Schiavi SC, Belasco JG, Greenberg ME (1992) Regulation of protooncogene mRNA stability. Biochim Biophys Acta 1114:95–106PubMedGoogle Scholar
  14. 14.
    Veyrune JL, Hesketh J, Blanchard JM (1997) 3′-Untranslated regions of c-myc and c-fos mRNAs: multifunctional elements regulating mRNA translation, degradation and subcellular localization. Prog Mol Subcell Biol 18:35–63PubMedGoogle Scholar
  15. 15.
    Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58:266–277CrossRefPubMedGoogle Scholar
  16. 16.
    Jacobson A, Peltz SW (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65:693–739CrossRefPubMedGoogle Scholar
  17. 17.
    Ma W-J, Cheng S, Campbell C, Wright A, Furneaux H (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271:8144–8151CrossRefPubMedGoogle Scholar
  18. 18.
    Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclearcytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17:3448–3460CrossRefPubMedGoogle Scholar
  19. 19.
    Wolff B, Sanglier J-J, Wang Y (1997) Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immnuodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 4:139–147CrossRefPubMedGoogle Scholar
  20. 20.
    Brennan CM, Gallouzi IE, Steitz JA (2000) Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 151:1–13CrossRefPubMedGoogle Scholar
  21. 21.
    Jang B-C, Muñoz-Najar U, Paik J-H, Claffey K, Yoshida M, Hla T (2003) Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem 278:2773–2776CrossRefPubMedGoogle Scholar
  22. 22.
    Higashino F, Aoyagi M, Takahashi A, Ishino M, Taoka M, Isobe T, Kobayashi M, Totsuka Y, Kohgo T, Shindoh M (2005) Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism. J Cell Biol 170:15–20CrossRefPubMedGoogle Scholar
  23. 23.
    Mann DA, Mikaélian I, Zemmel RW, Green SM, Lowe AD, Kimura T, Singh M, Butler PJ, Gait MJ, Karn J (1994) A molecular rheostat. Co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression. J Mol Biol 241:193–207CrossRefPubMedGoogle Scholar
  24. 24.
    Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060CrossRefPubMedGoogle Scholar
  25. 25.
    Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5:289–307CrossRefPubMedGoogle Scholar
  26. 26.
    Nagata S, Mantei N, Weissmann C (1980) The structure of one of the eight or more distinct chromosomal genes for human interferon-α. Nature (Lond) 287:401–408CrossRefGoogle Scholar
  27. 27.
    Kimura T, Hashimoto I, Nagase T, Fujisawa JI (2004) CRM1-dependent, but not ARE-mediated, nuclear export of IFN-α1 mRNA. J Cell Sci 117:2259–2270CrossRefPubMedGoogle Scholar
  28. 28.
    Bakheet T, Frevel M, Williams BRG, Greer W, Khabar KSA (2001) ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res 29:246–254CrossRefPubMedGoogle Scholar
  29. 29.
    Clackson T, Güssow D, Jones PT (1991) General applications of PCR to gene cloning and manipulation. In: McPherson MJ, Quirke P, Taylor GR (eds) PCR 1: a practical approach. IRL Press at Oxford University Press, Oxford, pp 187–214Google Scholar
  30. 30.
    Matsui K, Nishizawa M, Ozaki T, Kimura T, Hashimoto I, Yamada M, Kaibori M, Kamiyama Y, Ito S, Okumura T (2008) Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47:686–697CrossRefPubMedGoogle Scholar
  31. 31.
    Kimura T, Hashimoto I, Nishikawa M, Yamada H (2009) Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase. Med Mol Morphol 42:70–81CrossRefPubMedGoogle Scholar
  32. 32.
    SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 93:8496–8501CrossRefPubMedGoogle Scholar
  33. 33.
    Le S-Y, Maizel JV (2004) Computational discovery of distinct RNA elements with functional structures in genomic sequences. In: Pandalai SG (ed) Recent research developments in molecular and cellular biology. Research Signpost, Trivandrum, pp 63–77Google Scholar
  34. 34.
    Wodrich H, Bohne J, Gumz E, Welker R, Kräusslich H-G (2001) A new RNA element located in the coding region of a murine endogenous retrovirus can functionally replace the Rev/Rev-responsive element system in human immunodeficiency virus type 1 Gag expression. J Virol 75:10670–10682CrossRefPubMedGoogle Scholar
  35. 35.
    Zuker M (2003) mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedGoogle Scholar
  36. 36.
    Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horinouchi S (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 96:9112–9117CrossRefPubMedGoogle Scholar
  37. 37.
    Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-colour confocal images. J Microsc 169:375–382Google Scholar
  38. 38.
    Mayeda A, Badolato J, Kobayashi R, Zhang MQ, Gardiner EM, Krainer AR (1999) Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing. EMBO J 18:4560–4570CrossRefPubMedGoogle Scholar
  39. 39.
    Huang Y, Gattoni R, Stévenin J, Steitz JA (2003) SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell 11:837–843CrossRefPubMedGoogle Scholar
  40. 40.
    Huang Y, Steitz JA (2001) Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7:899–905CrossRefPubMedGoogle Scholar
  41. 41.
    Cullen BR (2003) Nuclear RNA export. J Cell Sci 116:587–597CrossRefPubMedGoogle Scholar
  42. 42.
    Masuyama K, Taniguchi I, Kataoka N, Ohno M (2004) RNA length defines RNA export pathway. Genes Dev 18:2074–2085CrossRefPubMedGoogle Scholar
  43. 43.
    Kimura T, Ohyama A (1994) Interaction with the Rev response element along an extended stem I duplex structure is required to complete human immunodeficiency virus type 1 rev-mediated trans-activation in vivo. J Biochem (Tokyo) 115:945–952Google Scholar
  44. 44.
    Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869CrossRefPubMedGoogle Scholar
  45. 45.
    Wiegand HL, Lu S, Cullen BR (2003) Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 100:11327–11332CrossRefPubMedGoogle Scholar
  46. 46.
    Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281:10912–10925CrossRefPubMedGoogle Scholar
  47. 47.
    Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773CrossRefPubMedGoogle Scholar
  48. 48.
    Kuersten S, Segal SP, Verheyden J, LaMartina SM, Goodwin EB (2004) NXF-2, REF-1, and REF-2 affect the choice of nuclear export pathway for tra-2 mRNA in C. elegans. Mol Cell 14:599–610CrossRefPubMedGoogle Scholar
  49. 49.
    Swanson CM, Puffer BA, Ahmad KM, Doms RW, Malim MH (2004) Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J 23:2632–2640CrossRefPubMedGoogle Scholar
  50. 50.
    Flint SJ, Gonzalez RA (2003) Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 272:287–330PubMedGoogle Scholar
  51. 51.
    Satterly N, Tsai PL, van Deursen J, Nussenzveig DR, Wang Y, Faria PA, Levay A, Levy DE, Fontoura BM (2007) Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci USA 104:1853–1858CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2010

Authors and Affiliations

  • Tominori Kimura
    • 1
    • 3
    Email author
  • Iwao Hashimoto
    • 1
    • 3
  • Mikio Nishizawa
    • 2
    • 4
  • Seiji Ito
    • 4
  • Hisao Yamada
    • 5
  1. 1.Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical SciencesRitsumeikan UniversityKusatsu, ShigaJapan
  2. 2.Laboratory of Medical Chemistry, Department of Biomedical Sciences, College of Life SciencesRitsumeikan UniversityShigaJapan
  3. 3.Department of MicrobiologyKansai Medical UniversityOsakaJapan
  4. 4.Department of Medical ChemistryKansai Medical UniversityOsakaJapan
  5. 5.Department of Anatomy and Cell ScienceKansai Medical UniversityOsakaJapan

Personalised recommendations