Medical Molecular Morphology

, Volume 43, Issue 1, pp 1–5 | Cite as

Developments and applications of mass microscopy

  • Mitsutoshi Setou
  • Kamlesh Shrivas
  • Morakot Sroyraya
  • Hyunjeong Yang
  • Yuki Sugiura
  • Junji Moribe
  • Akira Kondo
  • Koji Tsutsumi
  • Yoshishige Kimura
  • Nobuya Kurabe
  • Takahiro Hayasaka
  • Naoko Goto-Inoue
  • Nobuhiro Zaima
  • Koji Ikegami
  • Prasert Sobhon
  • Yoshiyuki Konishi
Award Review

Abstract

We have developed a mass microscopy technique, i.e., a microscope combined with high-resolution matrixassisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), which is a powerful tool for investigating the spatial distribution of biomolecules without any time-consuming extraction, purification, and separation procedures for biological tissue sections. Mass microscopy provides clear images about the distribution of hundreds of biomolecules in a single measurement and also helps in understanding the cellular profile of the biological system. The sample preparation and the spatial resolution and speed of the technique are all important steps that affect the identification of biomolecules in mass microscopy. In this Award Lecture Review, we focus on some of the recent developments in clinical applications to show how mass microscopy can be employed to assess medical molecular morphology.

Key words

Matrix-assisted laser desorption/ionization (MALDI) Nanoparticle-based laser desorption/ionization (nano-PALDI) Mass microscope Imaging mass spectrometry Clinical samples Biomolecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kevles BH (1996) Naked to the bone medical imaging in the twentieth tentury. Rutgers University Press, Camden, NJ, pp 19–22Google Scholar
  2. 2.
    Weissleder R, Moore A, Mahmood U, Bogdanov A (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355CrossRefPubMedGoogle Scholar
  3. 3.
    Setou M, Radostin D, Atsuzawa K, Yao I, Fukuda Y, Usuda N, Nagayama K (2006) Mammalian cell nano structures visualized by cryo-Hilbert differential contrast transmission electron microscopy. Med Mol Morphol 39:176–180CrossRefPubMedGoogle Scholar
  4. 4.
    Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210–224PubMedGoogle Scholar
  5. 5.
    Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K, Morone N, Yao I, Campbell PK, Yuasa S, Janke C, Macgregor GR, Setou M (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 104:3213–3218CrossRefPubMedGoogle Scholar
  6. 6.
    Yao I, Takagi H, Ageta H, Kahyo T, Sato S, Hatanaka K, Fukuda Y, Chiba T, Morone N, Yuasa S, Inokuchi K, Ohtsuka T, Macgregor GR, Tanaka K, Setou M (2007) SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130:943–957CrossRefPubMedGoogle Scholar
  7. 7.
    Hatanaka T, Hatanaka Y, Setou M (2006) Regulation of amino acid transporter ATA2 by ubiquitin ligase Nedd4-2. J Biol Chem 281:35922–35930CrossRefPubMedGoogle Scholar
  8. 8.
    Ikegami K, Mukai M, Tsuchida J, Heier RL, Macgregor GR, Setou M (2006) TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites. J Biol Chem 281: 30707–30716CrossRefPubMedGoogle Scholar
  9. 9.
    Hatanaka T, Hatanaka Y, Tsuchida J, Ganapathy V, Setou M (2006) Amino acid transporter ATA2 is stored at the trans-Golgi network and released by insulin stimulus in adipocytes. J Biol Chem 281:39273–39284CrossRefPubMedGoogle Scholar
  10. 10.
    Konishi Y, Setou M (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12:559–567CrossRefPubMedGoogle Scholar
  11. 11.
    Yang H, Takagi H, Konishi Y, Ageta H, Ikegami K, Yao I, Sato S, Hatanaka K, Inokuchi K, Seog DH, Setou M (2008) Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS) facilitates surface expression of GluR2-containing AMPA receptors. PLoS One 3:e2809CrossRefPubMedGoogle Scholar
  12. 12.
    Fukuda Y, Kawano Y, Tanikawa Y, Oba M, Koyama M, Takagi H, Matsumoto M, Nagayama K, Setou M (2006) In vivo imaging of the dendritic arbors of layer V pyramidal cells in the cerebral cortex using a laser scanning microscope with a stick-type objective lens. Neurosci Lett 400:53–57CrossRefPubMedGoogle Scholar
  13. 13.
    Asai S, Takamura K, Suzuki H, Setou M (2008) Single-cell imaging of c-fos expression in rat primary hippocampal cells using a luminescence microscope. Neurosci Lett 434:289–292CrossRefPubMedGoogle Scholar
  14. 14.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473CrossRefPubMedGoogle Scholar
  15. 15.
    Benninghoven A (1973) Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surface Sci 35:427–457CrossRefGoogle Scholar
  16. 16.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153CrossRefGoogle Scholar
  17. 17.
    Day RJ, Unger SE, Cooks RG (1979) Formation of metal chelates in secondary ion mass spectrometry. Comparisons with solution chemistry. J Am Chem Soc 101:499–501CrossRefGoogle Scholar
  18. 18.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefPubMedGoogle Scholar
  19. 19.
    Ruotolo BT, Gillig KJ, Woods AS, Egan TF, Ugarov MV, Schultz JA, Russell DH (2004) Analysis of phosphorylated peptides by ion mobility-mass spectrometry. Anal Chem 76:6727–6733CrossRefPubMedGoogle Scholar
  20. 20.
    Luxembourg SL, Mize TH, McDonnell LA, Heeren RMA (2004) High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 76:5339–5344CrossRefPubMedGoogle Scholar
  21. 21.
    Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV (2005) Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Dis Today 10:823–837CrossRefGoogle Scholar
  22. 22.
    Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem 80:878–885CrossRefPubMedGoogle Scholar
  23. 23.
    Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50:1776–1788CrossRefPubMedGoogle Scholar
  24. 24.
    Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M (2008) Imaging mass spectrometry technology and application on ganglioside study: visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3:e3232CrossRefPubMedGoogle Scholar
  25. 25.
    Zaima N, Matsuyama Y, Setou M (2009) Principal component analysis of direct matrix-assisted laser desorption/ionization mass spectrometric data related to metabolites of fatty liver. J Oleo Sci 58:267–273PubMedGoogle Scholar
  26. 26.
    Hayasaka T, Goto-Inoue N, Zaima N, Kimura Y, Setou M (2009) Organ-specific distributions of lysophosphatidylcholine and triacylglycerol in mouse embryo. Lipids 44:837–848CrossRefPubMedGoogle Scholar
  27. 27.
    Goto-Inoue N, Hayasaka T, Zaima N, Setou M (2009) The specific localization of seminolipid molecular species on mouse testis during testicular maturation revealed by imaging mass spectrometry. Glycobiology 19:950–957CrossRefPubMedGoogle Scholar
  28. 28.
    Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M (2008) Matrixassisted laser desorption/ionization quadrupole ion trap time-offlight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22:3415–3426CrossRefPubMedGoogle Scholar
  29. 29.
    Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M (2007) MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Anal Technol Biomed Life Sci 855:98–103CrossRefGoogle Scholar
  30. 30.
    Sugiura Y, Shimma S, Setou M (2006) Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry. J Mass Spectrom Soc Jpn 54:45–48Google Scholar
  31. 31.
    Shimma S, Furuta M, Ichimura K, Yoshida Y, Setou M (2006) A novel approach to in situ proteome analysis using chemical inkjet printing technology and MALDI-QIT-TOF tandem mass spectrometer. J Mass Spectrom Soc Jpn 54:133–140Google Scholar
  32. 32.
    Hosokawa N, Sugiura Y, Setou M (2008) Spectrum normalization method using an external standard in mass spectrometric imaging. J Mass Spectrom Soc Jpn 56:77–81Google Scholar
  33. 33.
    Goto-Inoue N, Hayasaka T, Sugiura Y, Taki T, Li YT, Matsumoto M, Setou M (2008) High-sensitivity analysis of glycosphingolipids by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight imaging mass spectrometry on transfer membranes. J Chromatogr B Anal Technol Biomed Life Sci 870:74–83CrossRefGoogle Scholar
  34. 34.
    Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766CrossRefPubMedGoogle Scholar
  35. 35.
    Moritake S, Taira S, Sugiura Y, Setou M, Ichiyanagi Y (2009) Magnetic nanoparticle-based mass spectrometry for the detection of biomolecules in cultured cells. J Nanosci Nanotechnol 9: 169–176CrossRefPubMedGoogle Scholar
  36. 36.
    Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M (2009) Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 42:16–23CrossRefPubMedGoogle Scholar
  37. 37.
    Goto-Inouea N, Hayasaka T, Takib T, Gonzalezc TV, Setou M (2009) A new lipidomics approach by thin-layer chromatographyblot-matrix-assisted laser desorption/ionization imaging mass spectrometry for analyzing detailed patterns of phospholipid molecular species. J Chromatogr A 1216:7096–7101CrossRefGoogle Scholar
  38. 38.
    Ikegami K, Horigome D, Mukai M, Livnat I, MacGregor GR, Setou M (2008) TTLL10 is a protein polyglycylase that can modify nucleosome assembly protein 1. FEBS Lett 582:1129–1134CrossRefPubMedGoogle Scholar
  39. 39.
    Setou M, Nakagawa T, Seog DH, Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796–1802CrossRefPubMedGoogle Scholar
  40. 40.
    Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature (Lond) 417: 83–87CrossRefGoogle Scholar
  41. 41.
    Hatanaka K, Ikegami K, Takagi H, Setou M (2006) Hypo-osmotic shock induces nuclear export and proteasome-dependent decrease of UBL5. Biochem Biophys Res Commun 350:610–615CrossRefPubMedGoogle Scholar
  42. 42.
    Yao I, Sugiura Y, Matsumoto M, Setou M (2008) In situ proteomics with imaging mass spectrometry and principal component analysis in the Scrapper-knockout mouse brain. Proteomics 8:3692–3701CrossRefPubMedGoogle Scholar
  43. 43.
    Setou M, Hayasaka T, Shimma S, Sugiura Y, Matsumoto M (2008) Protein denaturation improves enzymatic digestion efficiency for direct tissue analysis using mass spectrometry. Appl Surf Sci 255:1555–1559CrossRefGoogle Scholar
  44. 44.
    Morita Y, Ikegami K, Goto-Inoue N, Hayasaka T, Zaima N, Tanaka H, Uehara T, Setoguchi T, Sakaguchi T, Igarashi H, Sugimura H, Setou M, Konno H (2009) Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci 101:267–273CrossRefPubMedGoogle Scholar
  45. 45.
    Sugiura Y, Setou M Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward In situ pharmacometabolomes. J Neuroimmune Pharmacol (in press)Google Scholar
  46. 46.
    Garden RW, Sweedler JV (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem 72:30–36CrossRefPubMedGoogle Scholar
  47. 47.
    Harada T, Yuba-Kubo A, Sugiura Y, Zaima N, Hayasaka T, Goto-Inoue N, Wakui M, Suematsu M, Takeshita K, Ogawa K, Yoshida Y, Setou M (2009) Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal Chem 81:9153–9157CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2010

Authors and Affiliations

  • Mitsutoshi Setou
    • 1
  • Kamlesh Shrivas
    • 1
  • Morakot Sroyraya
    • 1
    • 2
  • Hyunjeong Yang
    • 1
  • Yuki Sugiura
    • 1
  • Junji Moribe
    • 1
  • Akira Kondo
    • 1
  • Koji Tsutsumi
    • 1
  • Yoshishige Kimura
    • 1
  • Nobuya Kurabe
    • 1
  • Takahiro Hayasaka
    • 1
  • Naoko Goto-Inoue
    • 1
  • Nobuhiro Zaima
    • 1
  • Koji Ikegami
    • 1
  • Prasert Sobhon
    • 2
  • Yoshiyuki Konishi
    • 1
  1. 1.Department of Molecular AnatomyHamamatsu University School of MedicineHamamatsu, ShizuokaJapan
  2. 2.Department of Anatomy, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations