Medical Molecular Morphology

, Volume 39, Issue 4, pp 209–213 | Cite as

CAM5.2-positive subserosal myofibroblasts in appendicitis

  • Tadashi Hamauzu
  • Naoto Kuroda
  • Limei Guo
  • Eriko Miyazaki
  • Yoshihiro Hayashi
  • Makoto Toi
  • Makoto Hiroi
  • Hideaki Enzan
ORIGINAL PAPER

Abstract

In this study, we examined the distribution and origin of myofibroblasts around the perforations of appendicitis. Stromal cells of 45 cases were studied by immunohistochemistry. In the normal appendix, myofibroblasts were restricted to the mucosa, and CD34-positive stromal cells were distributed in the submucosal and subserosal layers. Some mesothelial cells were positive for cytokeratin CAM5.2, cytokeratin 5, or mesothelial cells (HBME-1). In perforation of appendicitis with both abscess and granulation tissue, a small to moderate or a moderate to large number of myofibroblasts appeared in the subserosal area around the perforation, respectively, but CD34-positive stromal cells were completely absent there. In the subserosal area of the perforation of appendicitis with abscess, cytokeratin 5-positive stromal cells were absent. However, a small to moderate number of cytokeratin CAM5.2-positive stromal cells were observed there. Double immunostaining showed the coexpression of alpha-smooth muscle actin (ASMA) and cytokeratin CAM5.2 and the coexpression of cytokeratin 5 and cytokeratin CAM5.2 in many or some stellate-shaped or spindle-shaped stromal cells existing in the subserosal area with granulation tissue around the perforation of appendicitis, respectively. Finally, many myofibroblasts appearing in the subserosal area of the perforation of appendicitis may be derived from submesothelial cells or mesothelial cells.

Key words

Appendicitis Perforation Myofibroblasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nakayama, H, Enzan, H, Miyazaki, E, Naruse, K, Kiyoku, H, Hiroi, M 1998The role of myofibroblasts at the tumor border of invasive colorectal adenocarcinomasJpn J Clin Oncol28615620PubMedCrossRefGoogle Scholar
  2. 2.
    Nakayama, H, Enzan, H, Miyazaki, E, Kuroda, N, Naruse, K, Kiyoku, H, Hiroi, M 2000Myofibroblasts at the tumor border of invasive gastric carcinomas: with special reference to histological type and tumor depthOncol Rep710111015PubMedGoogle Scholar
  3. 3.
    Barth, PJ, Ramaswamy, A, Moll, R 2002CD34+ fibrocytes in normal cervical stroma, cervical intraepithelial neoplasia III, and invasive squamous cell carcinoma of the cervix uteriVirchows Arch441564568PubMedCrossRefGoogle Scholar
  4. 4.
    Kuroda, N, Toi, M, Nakayama, H, Miyazaki, E, Yamamoto, M, Hayashi, Y, Hiroi, M, Enzan, H 2004The distribution and role of myofibroblasts and CD34-positive stromal cells in normal pancreas and various pancreatic lesionsHistol Histopathol195967PubMedGoogle Scholar
  5. 5.
    Kuroda, N, Miyazaki, E, Hayashi, Y, Toi, M, Hiroi, M, Enzan, H 2004The disappearance of CD34-positive and alpha-smooth muscle actin-positive stromal cells associated with human intra-uterine and tubal pregnanciesHistol Histopathol19707713PubMedGoogle Scholar
  6. 6.
    Kuroda, N, Nakayama, H, Miyazaki, E, Hayashi, Y, Toi, M, Hiroi, M, Enzan, H 2004Distribution and role of CD34-positive stromal cells and myofibroblasts in human normal testicular stromaHistol Histopathol19743751PubMedGoogle Scholar
  7. 7.
    Powell, DW, Mifflin, RC, Valentich, JD, Crowe, SE, Saada, JI, West, AB 1999Myofibroblast. I. Paracrine cells important in health and diseaseAm J Physiol277C1C19PubMedGoogle Scholar
  8. 8.
    Powell, DW, Mifflin, RC, Valentich, JD, Crowe, SE, Saada, JI, West, AB 1999Myofibroblasts. II. Intestinal subepithelial myofibroblastsAm J Physiol277C183C201PubMedGoogle Scholar
  9. 9.
    Adegboyega, PA, Mifflin, RC, DiMari, JF, Saada, JI, Powell, DW 2002Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polypsArch Pathol Lab Med126829836PubMedGoogle Scholar
  10. 10.
    Pitt, MA, Haboubi, NY 1995Serosal reaction in chronic gastric ulcers: an immunohistochemical and ultrastructural studyJ Clin Pathol48226228PubMedGoogle Scholar
  11. 11.
    Chauhan, H, Abraham, A, Phillips, JRA, Pringle, JH, Walker, RA, Jones, JL 2003There is more than one kind of myofibroblasts: analysis of CD34 expression in benign, in situ, and invasive breast lesionsJ Clin Pathol56271276PubMedCrossRefGoogle Scholar
  12. 12.
    Jimenez-Heffernan, JA, Aguilera, A, Aroeira, LS, Lara-Pezzi, E, Bajo, MA, del Peso, G, Ramirez, M, Gamallo, C, Sanchez-Tomero, JA, Alvarez, V, Lopez-Cabrera, M, Selgas, R 2004Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosisVirchows Arch444247256PubMedCrossRefGoogle Scholar
  13. 13.
    Guo, L, Kuroda, N, Nakayama, H, Miyzaki, E, Hayashi, Y, Toi, M, Hiroi, M, Enzan, H 2006Cytokeratin-positive subserosal myofibroblasts in gastrointestinal ulcer; another type of myofibroblastsHistol Histopathol21697704PubMedGoogle Scholar
  14. 14.
    Ueki, N, Sobue, K, Kanda, K, Hada, T, Higashino, K 1987Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cellsProc Natl Acad Sci USA8490499053PubMedCrossRefGoogle Scholar
  15. 15.
    Ceballos, KM, Nielsen, GP, Selig, MK, O'Connell, JX 2000Is anti-h-caldesmon useful for distinguishing smooth muscle and myofibroblastic tumors?Am J Surg Pathol114746753Google Scholar
  16. 16.
    Watanabe, K, Tajiro, T, Sekiguchi, M, Suzuki, T 2000H-caldesmon as a specific marker for smooth muscle tumors: comparison with other smooth muscle markers in bone tumorsAm J Clin Pathol113663668PubMedGoogle Scholar
  17. 17.
    Rush, DS, Tan, JY, Baergen, RN, Soslow, RA 2001H-caldesmon, a novel smooth muscle-specific antibody, distinguishes between cellular leiomyoma and endometrioid stromal sarcomaAm J Surg Pathol25253258PubMedCrossRefGoogle Scholar
  18. 18.
    Bolen, JW, Hammar, SP, McNutt, MA 1986Reactive and neoplastic serosal tissue. A light-microscopic, ultrastructural, and immunocytological studyAm J Surg Pathol103447PubMedCrossRefGoogle Scholar
  19. 19.
    Bolen, JW, Hammar, SP, McNutt, MA 1987Serosal tissue: reactive tissue as a model for understanding mesotheliomaUltrastruct Pathol11251262PubMedGoogle Scholar
  20. 20.
    Brittan, M, Hunt, T, Jeffery, R, Poulsom, R, Forbes, SJ, Hodivala-Dilke, K, Goldman, J, Alison, MR, Wright, NA 2002Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colonGut50752757PubMedCrossRefGoogle Scholar
  21. 21.
    Mutsaers, SE, Whitaker, D, Papadimitriou, JM 2000Mesothelial regeneration is not dependent on subserosal cellsJ Pathol1908692PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, AH, Chen, JY, Lin, JK 2003Myofibroblastic conversion of mesothelial cellsKidney Int6315301539PubMedCrossRefGoogle Scholar
  23. 23.
    Amari, M, Taguchi, K, Iwahara, M, Naoe, S, Takahashi, K 2004Immunohistochemical and ultrastructural studies of the effects of predonisolone on transformation of fibroblasts to regenerated mesothelial cellsMed Electron Microsc37242251PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2006

Authors and Affiliations

  • Tadashi Hamauzu
    • 1
  • Naoto Kuroda
    • 2
  • Limei Guo
    • 3
  • Eriko Miyazaki
    • 1
  • Yoshihiro Hayashi
    • 1
  • Makoto Toi
    • 1
  • Makoto Hiroi
    • 1
  • Hideaki Enzan
    • 1
  1. 1.Department of PathologyProgram of Bioregulation and Genetics, Kochi Medical School, Kochi UniversityKochiJapan
  2. 2.Department of Pathology and Laboratory MedicineKochi Red Cross HospitalKochi CityKochiJapan
  3. 3.Department of PathologyHealth Science Center, Peking UniversityBeijingChina

Personalised recommendations