Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor

  • B. Montañez-Barragán
  • J. L. Sanz-Martín
  • P. Gutiérrez-Macías
  • A. Morato-Cerro
  • R. Rodríguez-Vázquez
  • B. E. Barragán-HuertaEmail author
Original Paper


Biodecolorization and biodegradation of azo dyes are a challenge due to their recalcitrance and the characteristics of textile effluents. This study presents the use of Halomonas sp. in the decolorization of azo dyes Reactive Black 5 (RB5), Remazol Brilliant Violet 5R (RV5), and Reactive Orange 16 (RO16) under high alkalinity and salinity conditions. Firstly, the effect of air supply, pH, salinity and dye concentration was evaluated. Halomonas sp. was able to remove above 84% of all dyes in a wide range of pH (6–11) and salt concentrations (2–10%). The decolorization efficiency of RB5, RV5, and RO16 was found to be ≥ 90% after 24, 13 and 3 h, respectively, at 50 mg L−1 of dyes. The process was monitored by HPLC-DAD, finding a reduction of dyes along the time. Further, Halomonas sp. was immobilized in volcanic rocks and used in a packed bed reactor for 72 days, achieving a removal rate of 3.48, 5.73, and 8.52 mg L−1 h−1, for RB5, RV5 and RO16, respectively, at 11.8 h. The study has confirmed the potential of Halomonas sp. to decolorize azo dyes under high salinity and alkalinity conditions and opened a scope for future research in the treatment of textile effluents.


Halomonas sp. Azo dyes Salinity Alkalinity Microaerobic Packed bed reactor 



Funding was provided by Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional (Grant no. SIP-20195891).

Supplementary material

792_2019_1149_MOESM1_ESM.docx (168 kb)
Supplementary file1 (DOCX 167 kb)


  1. Asad S, Amoozegar M, Pourbabaee A, Sarbolouki M, Dastgheib S (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088CrossRefGoogle Scholar
  2. Barragán B, Costa C, Márquez C (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigment 75(1):73–81CrossRefGoogle Scholar
  3. Bhattacharya A, Goyal N, Gupta A (2017) Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles 21(3):479–490CrossRefGoogle Scholar
  4. Castillo Carvajal LC (2014) Eliminación de azo-colorantes mediante microorganismos halófilos aislados de las salmueras de Zapotitlán Salinas, Puebla. Doctoral thesis. Instituto Politécnico Nacional. MéxicoGoogle Scholar
  5. Chang J, Kuo T (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75(2):107–111CrossRefGoogle Scholar
  6. Chang J, Chou C, Lin Y, Ho J, Hu TL (2001) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 35:2041–2850Google Scholar
  7. Chen C, Chen J, Houng J (2000) Improvement of nitrogen removal efficiency using immobilized microorganisms with oxidation–reduction potential monitoring. J Ind Microbiol Biotechnol 25:229–234CrossRefGoogle Scholar
  8. Chequer F, de Oliveira G, Ferraz E, Carvalho J, Zanoni M, de Oliveira D (2013) Textile dyes: dyeing process and environmental impact. Eco Friendly Text Dye Finish 6:151–174 (Melih Gunay, Intech Open) Google Scholar
  9. Dias AA, Lucas MS, Sampaio A, Peres JA, Bezerra RMF (2010) Decolorization of azo dyes by yeasts. In: Atacag Erkurt H (ed) Biodegradation of azo dyes. The handbook of environmental chemistry, vol 9. Springer, Berlin, Heidelberg, pp 183–194Google Scholar
  10. Dwyer DF, Krumme ML, Boyd SA (1986) Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl Environ Microbiol 52:345–350PubMedPubMedCentralGoogle Scholar
  11. El-Sheekh M, Gharieb M, Abou-El-Souod G (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegrad 63(6):699–704CrossRefGoogle Scholar
  12. Eslami M, Amoozegar M, Asad S (2016) Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. Int J Biol Macromol 85:111–116CrossRefGoogle Scholar
  13. Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–997CrossRefGoogle Scholar
  14. Garg V, Kaushik P (2008) Influence of textile mill wastewater irrigation on the growth of sorghum cultivars. Appl Ecol Env Res 6(2):1–12CrossRefGoogle Scholar
  15. Hosseini Koupaie E, Alavi M, Hashemi S (2013) Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18: comparison of using two types of packing media. Bioresour Technol 127:415–421CrossRefGoogle Scholar
  16. Imran M, Crowley D, Khalid A, Hussain S, Mumtaz M, Arshad M (2014) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biol 14(1):73–92CrossRefGoogle Scholar
  17. Isik M, Sponza DT (2004) Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions. J Environ Sci Health Part A 39(4):1107–1127CrossRefGoogle Scholar
  18. Jonstrup M, Kumar N, Murto M, Mattiasson B (2011) Sequential anaerobic–aerobic treatment of azo dyes: decolourisation and amine degradability. Desalination 280(1–3):339–346CrossRefGoogle Scholar
  19. Kurade M, Waghmode T, Khandare R, Jeon B, Govindwar S (2016) Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. J Biosci Bioeng 121(4):442–449CrossRefGoogle Scholar
  20. Lalnunhlimi S, Krishnaswamy V (2016) Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Braz J Microbiol 47(1):39–46CrossRefGoogle Scholar
  21. Murali V, Ong S, Ho L, Wong Y (2013) Evaluation of integrated anaerobic–aerobic biofilm reactor for degradation of azo dye methyl orange. Bioresour Technol 143:104–111CrossRefGoogle Scholar
  22. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59(2):73–84CrossRefGoogle Scholar
  23. Prasad A, Rao K (2012) Aerobic biodegradation of azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Appl Microbiol Biotechnol 97(16):7469–7481CrossRefGoogle Scholar
  24. Rajeshwari K, Subashkuma R, Vijayarama K (2011) Biodegradation of mixed textile dyes by bacterial strains isolated from dye waste effluent. Res J Environ Toxicol 5(2):97–107CrossRefGoogle Scholar
  25. Rawat D, Mishra V, Sharma S (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605CrossRefGoogle Scholar
  26. Saratale R, Saratale G, Chang J, Govindwar S (2009) Decolorization and biodegradation of textile dye Navy Blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166:1421–1428CrossRefGoogle Scholar
  27. Saratale R, Saratale G, Chang J, Govindwar S (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157CrossRefGoogle Scholar
  28. Sen S, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133CrossRefGoogle Scholar
  29. Shah B, Jain K, Jiyani H, Mohan V, Madamwar D (2016) Microaerophilic symmetric reductive cleavage of reactive azo dye—Remazole Brilliant Violet 5R by consortium VIE6: community synergism. Appl Biochem Biotechnol 180(6):1029–1042CrossRefGoogle Scholar
  30. Sipma J, Osuna M, Emanuelsson M, Castro P (2010) Biotreatment of industrial wastewaters under transient-state conditions: process stability with fluctuations of organic load, substrates, toxicants, and environmental parameters. Crit Rev Environ Sci Technol 40(2):147–197CrossRefGoogle Scholar
  31. Tan L, He M, Song L, Fu X, Shi S (2016) Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresour Technol 203:287–294CrossRefGoogle Scholar
  32. Tony B, Goyal D, Khanna S (2009) Decolorization of textile azo dyes by aerobic bacterial consortium. Int Biodeterior Biodegrad 63(4):462–469CrossRefGoogle Scholar
  33. Wang CC, Lee CM, Lu CJ (2000) Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41:1873–1879CrossRefGoogle Scholar
  34. Wang X, Cheng X, Sun D, Ren Y, Xu G (2014) Fate and transformation of naphthylaminesulfonic azo dye Reactive Black 5 during wastewater treatment process. Environ Sci Pollut Res 21(8):5713–5723CrossRefGoogle Scholar
  35. Willetts J, Ashbolt N, Moosbrugger R, Aslam M (2000) The use of a thermophilic anaerobic system for pretreatment of textile dye wastewater. Water Sci Technol 42(5–6):309–316CrossRefGoogle Scholar
  36. Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76(3):719–726CrossRefGoogle Scholar
  37. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ 16(2):1193–1226Google Scholar
  38. You SJ, Teng JY (2009) Anaerobic decolorization bacteria for the treatment of azo dye in a sequential anaerobic and aerobic membrane bioreactor. J Taiwan Inst Chem Eng 40:500–504CrossRefGoogle Scholar
  39. Yusuff RO, Sonibare JA (2004) Characterization of textile industries’ effluents in Kaduna, Nigeria and pollution implications. Global Nest J 6:212–221Google Scholar
  40. Zaharia C, Suteu D (2012) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. Organic pollutants ten years after the stockholm convention—environmental and analytical update, pp 55–86Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • B. Montañez-Barragán
    • 1
  • J. L. Sanz-Martín
    • 2
  • P. Gutiérrez-Macías
    • 1
    • 3
  • A. Morato-Cerro
    • 2
  • R. Rodríguez-Vázquez
    • 3
  • B. E. Barragán-Huerta
    • 1
    Email author
  1. 1.Instituto Politecnico Nacional, Ingeniería en Sistemas AmbientalesMexico CityMexico
  2. 2.Department of Molecular BiologyUniversidad Autonoma de MadridMadridSpain
  3. 3.CINVESTAV IPN, Biotecnología Y BioingenieríaMexico CityMexico

Personalised recommendations